Background: Polymer materials based on hydrogel and silicone-hydrogel materials are commonly used in ophthalmology. It is important to research the structure of these materials, mainly the prevalence of free volumes.
Objectives: The study has been conducted in order to determine the presence of free volume gaps in the structure of polymer hydrogel and silicone-hydrogel contact lenses.
Spectrochim Acta A Mol Biomol Spectrosc
October 2014
Determination of free volume holes of the hydrogel and silicone-hydrogel polymer contact lenses were investigated. Two types of polymer contact lenses were used as materials: the first is a hydrogel contact lenses Proclear family (Omafilcon A), while the second is a silicone-hydrogel contact lens of the family Biofinity (Comfilcon A). Positron annihilation lifetime spectroscopy PALS was used to characterize geometrical sizes and fraction of the free volume holes in the investigated samples.
View Article and Find Full Text PDFUnlabelled: PURPOSE OF JOB: Currently, there isa need to increase comfort and visual acuity man. Simultaneously improving biocompatibility and minimizing the impact of the material on the physiology of the cornea is the primary driving force behind the evolution of materials used in the manufacture of contact lenses. Despite progressive development of modern materials science, there is still the problem of reducing the level of oxygen available to the cornea resulting in pathological changes in the cornea.
View Article and Find Full Text PDFA study has been conducted in order to determine presence of free volume gaps in the structure of structure of polymer hydrogel contact lenses made in phosphoryl choline technology and of the degree of defect of its structure. The study was made by means of positron annihilation lifetime spectroscopy. As a result of the conducted measurements, curves were obtained, which described numbers of counts of the acts of annihilation in the time function.
View Article and Find Full Text PDFUnlabelled: PURPOSE OF JOB: The evolution of materials used to manufacture contact lenses, there is a need to increase comfort and visual acuity man while improving biocompatibility and minimizing the impact of the material on the physiology of the cornea. There is still a problem with limiting the level of oxygen available to the cornea, resulting in various diseases. Therefore, the aim of this work is to investigate the physical and structural properties of hydrogel and silicone-hydrogel contact lenses.
View Article and Find Full Text PDF