Objective: Uncontrolled pain remains a major clinical challenge in the management of knee osteoarthritis (OA), the most common disabling joint disease. Worse pain is associated with synovial innate immune cell infiltration (synovitis), but the role of innate immune regulatory cells in pain is unknown. Our objective was to identify synovial innate immune cell subsets and pathophysiologic mechanisms associated with worse pain in patients with knee OA.
View Article and Find Full Text PDFIn degraded urban habitats, nature-based solutions aim to enhance ecosystem functioning and service provision. Bivalves are increasingly reintroduced to urban environments to enhance water quality through biofiltration, yet their long-term sustainability remains uncertain. Following the restoration of the disused South Docks in Liverpool in the 1980s, natural colonization of mussels rapidly improved dock-basin water quality and supported diverse taxa, including other filter feeders.
View Article and Find Full Text PDFThe success of non-native species (NNS) invasions depends on patterns of dispersal and connectivity, which underpin genetic diversity, population establishment and growth. In the marine environment, both global environmental change and increasing anthropogenic activity can alter hydrodynamic patterns, leading to significant inter-annual variability in dispersal pathways. Despite this, multi-generational dispersal is rarely explicitly considered in attempts to understand NNS spread or in the design of management interventions.
View Article and Find Full Text PDFMetabolic dysfunction-associated steatohepatitis (MASH) is the progressive form of liver steatosis, the most common liver disease, and substantially increases the mortality rate. However, limited therapies are currently available to prevent MASH development. Identifying potential pharmacological treatments for the condition has been hampered by its heterogeneous and complex nature.
View Article and Find Full Text PDFIn response to ongoing coastal urbanization, it is critical to develop effective methods to improve the biodiversity and ecological sustainability of artificial shorelines. Enhancing the topographic complexity of coastal infrastructure through the mimicry of natural substrata may facilitate the establishment of ecosystem engineering species and associated biogenic habitat formation. However, interactions between ecosystem engineers and their substratum are likely determined by organismal size and resource needs, thus making responses to topography highly scale-dependent.
View Article and Find Full Text PDF