Publications by authors named "A Kivelio"

The treatment of bone defects with recombinant bone morphogenetic protein-2 (BMP-2) requires high doses precluding broad clinical application. Here, a bioengineering approach is presented that strongly improves low-dose BMP-2-based bone regeneration by mobilizing healing-associated mesenchymal progenitor cells (MPCs). Smart synthetic hydrogels are used to trap and study endogenous MPCs trafficking to bone defects.

View Article and Find Full Text PDF

Over the last decades, great strides were made in the development of novel implants for the treatment of bone defects. The increasing versatility and complexity of these implant designs request for concurrent advances in means to assess in vivo the course of induced bone formation in preclinical models. Since its discovery, micro-computed tomography (micro-CT) has excelled as powerful high-resolution technique for non-invasive assessment of newly formed bone tissue.

View Article and Find Full Text PDF

Iatrogenic preterm prelabour rupture of fetal membranes (iPPROM) occurs in 6-45% of the cases after fetoscopic procedures, posing a significant threat to fetal survival and well-being. The number of diagnostic and therapeutic prenatal interventions available is increasing, thus developing treatment options for iPPROM is becoming more important than ever before. Fetal membranes exhibit very restricted regeneration and little is known about factors which might modulate their healing potential, rendering various materials and strategies to seal or heal fetal membranes pursued over the past decades relatively fruitless.

View Article and Find Full Text PDF

Objective: Iatrogenic preterm prelabour rupture of fetal membranes (iPPROM) remains the main complication after invasive interventions into the intrauterine cavity. The aim of this study was to evaluate the sealing capability and tissue interaction of mussel-mimetic tissue adhesive (mussel glue) in comparison to fibrin glue on punctured fetal membranes in vivo.

Study Design: A mid-gestational rabbit model was used for testing the materials.

View Article and Find Full Text PDF