Publications by authors named "A Kirschning"

Antimicrobial resistance is one of the major health threats of the modern world. Thus, new structural classes of antimicrobial compounds are needed in order to overcome existing resistance. Cystobactamids represent one such new compound class that inhibit the well-established target bacterial type II topoisomerases while exhibiting superior antibacterial and resistance-breaking properties.

View Article and Find Full Text PDF

Farnesyl pyrophosphate derivatives bearing an additional oxygen atom at position 5 proved to be very suitable for expanding the substrate promiscuity of sesquiterpene synthases (STSs) and the formation of new oxygenated terpenoids. Insertion of an oxygen atom in position 9, however, caused larger restraints that led to restricted acceptance by STSs. In order to reduce some of the proposed restrictions, two FPP-ether derivatives with altered substitution pattern around the terminal olefinic double bond were designed.

View Article and Find Full Text PDF

Novel scaffolds for broad-spectrum antibiotics are rare and in strong demand because of the increase in antimicrobial resistance. The cystobactamids, discovered from myxobacterial sources, have a unique hexapeptidic scaffold with five arylamides and possess potent, resistance-breaking properties. This study investigates the role of the central D-ring pharmacophore in cystobactamids, a para-aminobenzoic acid (PABA) moiety that is additionally substituted by hydroxy and isopropoxy functions.

View Article and Find Full Text PDF

Cystobactamids have a unique oligoarylamide structure and exhibit broad-spectrum activity against Gram-negative and Gram-positive bacteria. In this study, the central α-amino acid of the cystobactamid scaffold was modified to address the relevance of stereochemistry, hydrogen bonding and polarity by 33 derivatives. As demonstrated by three matched molecular pairs, l-amino acids were preferred over d-amino acids.

View Article and Find Full Text PDF

New diterpenoids are accessible from non-natural FPP derivatives as substrates for an enzymatic elongation cyclization cascade using the geranylgeranyl pyrophosphate synthase (GGPPS) from and the spata-13,17-diene synthase (SpS) from . This approach led to four new biotransformation products including three new cyclododecane cores and a macrocyclic ether. For the first time, a 1,12-terpene cyclization was observed when shifting the central olefinic double bond toward the geminial methyl groups creating a nonconjugated 1,4-diene.

View Article and Find Full Text PDF