Random network models, constrained to reproduce specific statistical features, are often used to represent and analyze network data and their mathematical descriptions. Chief among them, the configuration model constrains random networks by their degree distribution and is foundational to many areas of network science. However, configuration models and their variants are often selected based on intuition or mathematical and computational simplicity rather than on statistical evidence.
View Article and Find Full Text PDFA range of systems across the social and natural sciences generate data sets consisting of interactions between two distinct categories of items at various instances in time. Online shopping, for example, generates purchasing events of the form (user, product, time of purchase), and mutualistic interactions in plant-pollinator systems generate pollination events of the form (insect, plant, time of pollination). These data sets can be meaningfully modeled as temporal hypergraph snapshots in which multiple items within one category (i.
View Article and Find Full Text PDFNodes in networks that exhibit high connectivity, also called "hubs," play a critical role in determining the structural and functional properties of networked systems. However, there is no clear definition of what constitutes a hub node in a network, and the classification of network hubs in existing work has either been purely qualitative or relies on ad hoc criteria for thresholding continuous data that do not generalize well to networks with certain degree sequences. Here we develop a set of efficient nonparametric methods that classify hub nodes in directed networks using the Minimum Description Length principle, effectively providing a clear and principled definition for network hubs.
View Article and Find Full Text PDFJ R Soc Interface
November 2023
The spatial configuration of urban amenities and the streets connecting them collectively provide the structural backbone of a city, influencing its accessibility, vitality and ultimately the well-being of its residents. Most accessibility measures focus on the proximity of amenities in space or along transportation networks, resulting in metrics largely determined by urban density alone. These measures are unable to gauge how efficiently street networks can navigate between amenities, since they neglect the circuity component of accessibility.
View Article and Find Full Text PDFMessage passing (MP) is a computational technique used to find approximate solutions to a variety of problems defined on networks. MP approximations are generally accurate in locally treelike networks but require corrections to maintain their accuracy level in networks rich with short cycles. However, MP may already be computationally challenging on very large networks and additional costs incurred by correcting for cycles could be prohibitive.
View Article and Find Full Text PDF