A novel concept for dynamic focus shaping based on highly efficient coherent beam combining with micro-lens arrays (MLAs) as the combining element is presented. This concept allows us to control the power weights of diffraction orders by varying the absolute phases of an array of input beams. A proof-of-principle experiment is supported by simulations.
View Article and Find Full Text PDFWe report on a thin-disk laser system with more than 10 kW of output power and a beam quality of =1.76 at an overall optical-to-optical efficiency of 51%. The system consists of two thin-disk laser oscillators and a thin-disk multi-pass amplifier system.
View Article and Find Full Text PDFA novel, to the best of our knowledge, concept for coherent beam combining is presented based on a simple setup with micro-lens arrays. These standard components are used in a proof-of-principle experiment for both coherent beam splitting and a combination of 5×5 beams. Here a combination efficiency above 90% is achieved.
View Article and Find Full Text PDFWe present an ultrafast laser with a near-diffraction-limited beam quality delivering more than 1.4 kW of average power in the visible spectral range. The laser is based on second harmonic generation in a lithium triborate crystal of a Yb:YAG thin-disk multipass amplifier emitting more than 2 kW of average power in the infrared.
View Article and Find Full Text PDFAn ultrafast Yb-doped thin-disk multi-pass laser amplifier system with flexible parameters for material processing is reported. We can generate bursts consisting of four pulses at a distance of 20 ns and a total energy of 46.7 mJ at a repetition rate of 25 kHz.
View Article and Find Full Text PDF