Publications by authors named "A Kiersnowski"

This systematic study aimed at finding a correlation between molecular structure, solubility, self-assembly, and electronic properties of a homological series of -alkylated naphthalene diimides (NDIs). NDIs are known for their n-type carrier mobility and, therefore, have potential in the field of organic electronics, photovoltaics, and sensors. For the purpose of this study, nine symmetrical ,'-dialkylated naphthalene diimides (NDIC3-NDIC11) were synthesized in the reaction of 1,4,5,8-naphthalenetetracarboxylic dianhydride with alkylamines ranging from propyl- to undecyl-.

View Article and Find Full Text PDF

Herein we report on fabrication and properties of organic field-effect transistors (OFETs) based on the spray-coated films of N,N'-dioctyl naphthalene diimide (NDIC8) doped with 2.4 wt% of poly (3-hexylthiophene) (P3HT). OFETs with the untreated NDIC8:P3HT films revealed electron conductivity [μ* = 5 × 10 cm×(Vs)].

View Article and Find Full Text PDF

Organic electronics became an attractive alternative for practical applications in complementary logic circuits due to the unique features of organic semiconductors such as solution processability and ease of large-area manufacturing. Bulk heterojunctions (BHJ), consisting of a blend of two organic semiconductors of different electronic affinities, allow fabrication of a broad range of devices such as light-emitting transistors, light-emitting diodes, photovoltaics, photodetectors, ambipolar transistors and sensors. In this work, the charge carrier transport of BHJ films in field-effect transistors is switched from electron to hole domination upon processing and post-treatment.

View Article and Find Full Text PDF

We have investigated the formation of lamellar crystals of poly(vinylidene fluoride) (PVDF) in the presence of oriented clay particles with different aspect ratios (ARs) and surface properties. Hot-melt screw extrusion of PVDF with 5 wt % of montmorillonite (AR ≈ 12) or fluoromica (AR ≈ 27) resulted in formation of phase-separated blends. Replacing the clays with their organoclay derivatives, organomontmorillonite or organofluoromica, resulted in the corresponding intercalated nanocomposites.

View Article and Find Full Text PDF

Since the interfacial order of conjugated polymers plays an essential role for the performance of field-effect transistors, comprehensive understanding on the charge carrier transport in ultrathin semiconducting films below thicknesses of 10 nm is required for the development of transparent and flexible organic electronics. In this study, ultrathin films based on poly(3-hexylthiophene) as conjugated polymer model system with a thickness range from single monolayer up to several multilayers are investigated in terms of microstructure evolution and electrical properties of different molecular weights. Interestingly, a characteristic leap in field-effect mobility is observed for films with thickness greater than four layers.

View Article and Find Full Text PDF