Publications by authors named "A Kiendler-Scharr"

Background: The formation of secondary organic aerosols (SOA) by atmospheric oxidation reactions substantially contributes to the burden of fine particulate matter (PM), which has been associated with adverse health effects (e.g., cardiovascular diseases).

View Article and Find Full Text PDF

Oxidized Organic Aerosol (OOA), a major component of fine atmospheric particles, impacts climate and human health. Previous experiments and atmospheric models emphasize the importance of nocturnal OOA formation from NO· oxidation of biogenic VOCs. This seasonal study extends the understanding by showing that nocturnal oxidation of biomass-burning emissions can account for up to half of total OOA production in fall and winter.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated the toxic effects of secondary organic aerosols (SOAs) from different sources, specifically comparing soot particles coated with β-pinene SOA and naphthalene SOA on human bronchial cells.
  • Results showed that naphthalene SOA induced stronger oxidative stress and genotoxicity responses in the cells compared to β-pinene SOA due to differences in their chemical composition.
  • The findings suggest that SOAs from anthropogenic sources, like naphthalene, have higher toxicological risks compared to biogenic sources, highlighting the need for further research on SOA health effects.
View Article and Find Full Text PDF

Ozonolysis of unsaturated hydrocarbons (VOCs) is one of the main oxidation processes in the atmosphere. The stabilized Criegee intermediates (SCI) formed are highly reactive oxygenated species that potentially influence the HOx, NOx and SOx cycles, and affect aerosol formation by yielding low-volatility oxygenated compounds. The current knowledge spans mostly SCI formed from primary emitted VOCs, but little is known about the reactivity of oxygenated SCI.

View Article and Find Full Text PDF

Background: Secondary organic aerosols (SOAs) formed from anthropogenic or biogenic gaseous precursors in the atmosphere substantially contribute to the ambient fine particulate matter [PM in aerodynamic diameter ()] burden, which has been associated with adverse human health effects. However, there is only limited evidence on their differential toxicological impact.

Objectives: We aimed to discriminate toxicological effects of aerosols generated by atmospheric aging on combustion soot particles (SPs) of gaseous biogenic () or anthropogenic (naphthalene) precursors in two different lung cell models exposed at the air-liquid interface (ALI).

View Article and Find Full Text PDF