Publications by authors named "A Kazlauskas"

Purpose: The retina contains the highest concentration of the omega 3 fatty acid, docosahexaenoic acid (DHA), in the body. Although epidemiologic studies showed an inverse correlation between the consumption of omega 3 fatty acids and the prevalence of diabetic retinopathy, there are no data showing the effect of diabetes on retinal DHA in humans. In this study, we measured the DHA content of the retina in diabetic and non-diabetic humans as well as mice and determined the effect of diabetes on retinal thickness and function in mice.

View Article and Find Full Text PDF

Chronic elevation of blood glucose at first causes relatively minor changes to the neural and vascular components of the retina. As the duration of hyperglycemia persists, the nature and extent of damage increases and becomes readily detectable. While this second, overt manifestation of diabetic retinopathy (DR) has been studied extensively, what prevents maximal damage from the very start of hyperglycemia remains largely unexplored.

View Article and Find Full Text PDF

Diabetic retinopathy (DR) is the most common complication that develops in patients with diabetes mellitus (DM) and is the leading cause of blindness worldwide. Fortunately, sight-threatening forms of DR develop only after several decades of DM. This well-documented resilience to DR suggests that the retina is capable of protecting itself from DM-related damage and also that accumulation of such damage occurs only after deterioration of this resilience.

View Article and Find Full Text PDF

Diabetic retinopathy (DR) is a complex and progressive ocular disease characterized by two distinct phases in its pathogenesis. The first phase involves the loss of protection from diabetes-induced damage to the retina, while the second phase centers on the accumulation of this damage. Traditional assays primarily focus on evaluating capillary degeneration, which is indicative of the severity of damage, essentially addressing the second phase of DR.

View Article and Find Full Text PDF

Photoreceptor cell death and immune cell infiltration are two major events that contribute to retinal degeneration. However, the relationship between these two events has not been well delineated, primarily because of an inadequate understanding of the immunological processes involved in photoreceptor degeneration, especially that of peripheral leukocytes that infiltrate the subretinal space and retinal tissues. In this work, we characterized the role of leukocyte infiltration within the detached retina.

View Article and Find Full Text PDF