Publications by authors named "A Kavounoudias"

Texture, a fundamental object attribute, is perceived through multisensory information including touch and auditory cues. Coherent perceptions may rely on shared texture representations across different senses in the brain. To test this hypothesis, we delivered haptic textures coupled with a sound synthesizer to generate real-time textural sounds.

View Article and Find Full Text PDF

Introduction: Rehabilitation approaches take advantage of vision's important role in kinesthesia, using the mirror paradigm as a means to reduce phantom limb pain or to promote recovery from hemiparesis. Notably, it is currently applied to provide a visual reafferentation of the missing limb to relieve amputees' pain. However, the efficiency of this method is still debated, possibly due to the absence of concomitant coherent proprioceptive feedback.

View Article and Find Full Text PDF

Epidural electrical stimulation (EES) targeting the dorsal roots of lumbosacral segments restores walking in people with spinal cord injury (SCI). However, EES is delivered with multielectrode paddle leads that were originally designed to target the dorsal column of the spinal cord. Here, we hypothesized that an arrangement of electrodes targeting the ensemble of dorsal roots involved in leg and trunk movements would result in superior efficacy, restoring more diverse motor activities after the most severe SCI.

View Article and Find Full Text PDF

Most of our knowledge about the human spinal ascending (sensory) and descending (motor) pathways comes from non-invasive electrophysiological investigations. However, recent methodological advances in acquisition and analyses of functional magnetic resonance imaging (fMRI) data from the spinal cord, either alone or in combination with the brain, have allowed us to gain further insights into the organization of this structure. In the current review, we conducted a systematic search to produced somatotopic maps of the spinal fMRI activity observed through different somatosensory, motor and resting-state paradigms.

View Article and Find Full Text PDF

Background: Studying brain processes underlying tactile perception induced by natural-like stimulation is challenging yet crucial to closely match real-world situations.

New Method: We developed a computer-controlled pneumatic device that allows the delivery of complex airflow patterns on subject's body, through a MR-compatible system fixed on an independent clippable mounting device. The intensity of stimulation as well as the timing of each of the four air channels are completely programmable and independent, allowing the precise control and modularity of the airflow delivery.

View Article and Find Full Text PDF