Publications by authors named "A Kavelaars"

Chronic pain often includes periods of transient amelioration and even remission that alternate with severe relapsing pain. While most research on chronic pain has focused on pain development and maintenance, there is a critical unmet need to better understand the mechanisms that underlie pain remission and relapse. We found that interleukin (IL)-10, a pain resolving cytokine, is produced by resident macrophages in the spinal meninges during remission from pain and signaled to IL-10 receptor-expressing sensory neurons.

View Article and Find Full Text PDF

Chronic pain often alternates between transient remission and relapse of severe pain. While most research on chronic pain has focused on mechanisms maintaining pain, there is a critical unmet need to understand what prevents pain from re-emerging in those who recover from acute pain. We found that interleukin (IL)-10, a pain resolving cytokine, is persistently produced by resident macrophages in the spinal meninges during remission from pain.

View Article and Find Full Text PDF

Originally identified in fibroblasts, Protease Inhibitor (PI)16 was recently shown to be crucial for the development of neuropathic pain via effects on blood-nerve barrier permeability and leukocyte infiltration, though its impact on inflammatory pain has not been established. Using the complete Freund's Adjuvant inflammatory pain model, we show that Pi16 mice are protected against sustained inflammatory pain. Accordingly, intrathecal delivery of a PI16 neutralizing antibody in wild-type mice prevented sustained CFA pain.

View Article and Find Full Text PDF

Early phase diabetes is often accompanied by pain sensitization. In Drosophila, the insulin receptor (InR) regulates the persistence of injury-induced thermal nociceptive sensitization. Whether Drosophila InR also regulates the persistence of mechanical nociceptive sensitization remains unclear.

View Article and Find Full Text PDF

Background: There is increasing concern that cancer and cancer treatment accelerate aging and the associated cognitive decline. We showed recently that treatment of 9-month-old male mice with cisplatin causes cognitive deficits that are associated with formation of tau deposits in the hippocampus. Here we explored the capacity of mesenchymal stem cells (MSC) given via the nose to prevent age-related brain tau deposits.

View Article and Find Full Text PDF