Multiple sensory-motor maps located in the brainstem and the cortex are involved in spatial orientation. Guiding movements of eyes, head, neck and arms they provide an approximately linear relation between target distance and motor response. This involves especially the superior colliculus in the brainstem and the parietal cortex.
View Article and Find Full Text PDFIt is shown that real-time computations on spike patterns and temporal integration of information in neural microcircuit models are compatible with potentially descruptive additional inputs such as oscillations. A minor change in the connection statistics of such circuits (making synaptic connections to more distal target neurons more likely for excitatory than for inhibitory neurons) endows such generic neural microcircuit model with the ability to generate periodic patterns autonomously. We show that such pattern generation can also be multiplexed with pattern classification and temporal integration of information in the same neural circuit.
View Article and Find Full Text PDFThe aim of this study is to produce travelling waves in a planar net of artificial spiking neurons. Provided that the parameters of the waves--frequency, wavelength and orientation--can be sufficiently controlled, such a network can serve as a model of the spinal pattern generator for swimming and terrestrial quadruped locomotion. A previous implementation using non-spiking, sigmoid neurons lacked the physiological plausibility that can only be attained using more realistic spiking neurons.
View Article and Find Full Text PDFThe concerted and self-organizing behavior of spinal cord segments in generating locomotor patterns is modulated by afferent sensory information and controlled by descending pathways from the brainstem, cerebellum, or cortex. The purpose of this study was to define a minimal set of parameters that could control a similar self-organizing behavior in a two-dimensional neural network. When we implemented synaptic depression and active membrane repolarization as two properties of the neurons, the two-dimensional neural network generated traveling waves.
View Article and Find Full Text PDFA traveling wave in a two-dimensional spinal cord model constitutes a stable pattern generator for quadruped gaits. In the context of the somatotopic organization of the spinal cord, this pattern generator is sufficient to generate stable locomotive limb trajectories. The elastic properties of muscles alone, providing linear negative feedback, are sufficient to stabilize stance and locomotion in the presence of perturbative forces.
View Article and Find Full Text PDF