Publications by authors named "A Karnosova"

Hypothalamic Adult Neurogenesis (hAN) has been implicated in regulating energy homeostasis. Adult-generated neurons and adult Neural Stem Cells (aNSCs) in the hypothalamus control food intake and body weight. Conversely, diet-induced obesity (DIO) by high fat diets (HFD) exerts adverse influence on hAN.

View Article and Find Full Text PDF

A previous study on neuropeptide FF receptor 2 (NPFFR2)-deficient mice has demonstrated that NPFFR2 is involved in the control of energy balance and thermogenesis. Here, we report on the metabolic impact of NPFFR2 deficiency in male and female mice that were fed either a standard diet (STD) or a high-fat diet (HFD) and each experimental group consisted of ten individuals. Both male and female NPFFR2 knockout (KO) mice exhibited severe glucose intolerance that was exacerbated by a HFD diet.

View Article and Find Full Text PDF

Prolactin-releasing peptide (PrRP) is an anorexigenic neuropeptide that attenuates food intake and increases energy expenditure. We designed three series of new lipidized PrRP31 analogs of different lengths of fatty acids attached at amino acids 1 or 11 directly or via linkers, part of them acetylated at the N-terminus and/or modified with dichlorophenylalanine (PheCl) at the C-terminus. We tested their affinity for and activation of signaling pathways relevant to receptors GPR10, NPFF-R2, and NPFF-R1, effect on food intake in fasted or freely fed mice and rats, and stability in rat plasma.

View Article and Find Full Text PDF

Ghrelin is secreted in the stomach during fasting and targets the growth hormone secretagogue receptor (GHSR1a) in the hypothalamus and brainstem to exert its orexigenic effect. Recently, liver enriched antimicrobial peptide-2 (LEAP2) was identified as an endogenous high-affinity GHSR1a antagonist. LEAP2 is a 40-amino acid peptide with two disulfide bridges and GHRS1a affinity in the N-terminal hydrophobic part.

View Article and Find Full Text PDF

The anorexigenic neuropeptide prolactin-releasing peptide (PrRP) is involved in the regulation of food intake and energy expenditure. Lipidization of PrRP stabilizes the peptide, facilitates central effect after peripheral administration and increases its affinity for its receptor, GPR10, and for the neuropeptide FF (NPFF) receptor NPFF-R2. The two most potent palmitoylated analogs with anorectic effects in mice, palm-PrRP31 and palm-PrRP31, were studied in vitro to determine their agonist/antagonist properties and mechanism of action on GPR10, NPFF-R2 and other potential off-target receptors related to energy homeostasis.

View Article and Find Full Text PDF