Ca waves are known to trigger delayed after-depolarizations that can cause malignant cardiac arrhythmias. However, modelling Ca waves using physiologically realistic models has remained a major challenge. Existing models with low Ca sensitivity of ryanodine receptors (RyRs) necessitate large release currents, leading to an unrealistically large Ca transient amplitude incompatible with the experimental observations.
View Article and Find Full Text PDFGenome-wide association studies have reported a correlation between a SNP of the RING finger E3 ubiquitin protein ligase rififylin (RFFL) and QT interval variability in humans (Newton-Cheh et al., 2009). Previously, we have shown that RFFL downregulates expression and function of the human-like ether-a-go-go-related gene potassium channel and corresponding rapidly activating delayed rectifier potassium current (I) in adult rabbit ventricular cardiomyocytes.
View Article and Find Full Text PDFThis paper aims to describe the experimental framework of the Directional Solidification Insert, installed onboard the International Space Station, dedicated to the in situ and real-time characterization of the dynamic selection of the solid-liquid interface morphology in bulk samples of transparent materials under diffusive growth conditions. The in situ observation of the solid-liquid interface is an invaluable tool for gaining knowledge on the time evolution of the interface pattern because the initial morphological instability evolves nonlinearly and undergoes a reorganization process. The result of each experiment, characterized by the sample concentration, a thermal gradient, and a pulling rate, is a large number of images.
View Article and Find Full Text PDFWe investigate analytically and computationally the dynamics of two-dimensional needle crystal growth from the melt in a narrow channel. Our analytical theory predicts that, in the low supersaturation limit, the growth velocity V decreases in time t as a power law V∼t^{-2/3}, which we validate by phase-field and dendritic-needle-network simulations. Simulations further reveal that, above a critical channel width Λ≈5l_{D}, where l_{D} is the diffusion length, needle crystals grow with a constant V
Discordant alternans, the spatially out-of-phase alternation of the durations of propagating action potentials in the heart, has been linked to the onset of fibrillation, a major cardiac rhythm disorder. The sizes of the regions, or domains, within which these alternations are synchronized are critical in this link. However, computer models employing standard gap junction-based coupling between cells have been unable to reproduce simultaneously the small domain sizes and rapid action potential propagation speeds seen in experiments.
View Article and Find Full Text PDF