Given that the public uses the media to learn about adoption as a family form, this study analyzes U.S. television news coverage of adoption between 2001 and 2005 (N = 309 stories), to identify the types of news events covered about adoption.
View Article and Find Full Text PDFATP is released at the neuromuscular junction to regulate development and proliferation. The sequential expression of P2X and P2Y receptors has been correlated to these effects in many species and cell lines. We have therefore investigated ATP mediated signalling in differentiated primary human skeletal muscle cells.
View Article and Find Full Text PDFThe skeletal muscle Ca2+ release channel, the ryanodine receptor, is activated by the trypanocidal drug suramin via the calmodulin-binding site. As calmodulin activates and inhibits the ryanodine receptor depending on whether Ca2+ is absent or present, suramin analogues were screened for inhibition of the ryanodine receptor. Up to 300 microM, the novel suramin analogue, 4,4'-(carbonyl-bis(imino-4,1-phenylene-(2,5-benzimidazolylene)carbonylimino))-bis-benzenesulfonic acid disodium salt (NF676) was not able to significantly inhibit the basal [3H]ryanodine binding.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
April 2003
The contraction and relaxation of skeletal muscle is driven by release of Ca2+ from sarcoplasmic reticulum through the ryanodine receptor type 1 and extruding the ion from the cytosol by Ca2+ ATPases. Efficient refilling of the empty Ca2+ stores is essential for repetitive cycles of muscle contraction and relaxation, but not investigated in human skeletal muscle cells. Here we show that under conditions of selective depletion of the ryanodine-sensitive Ca2+ pool Ca2+ influx occurs in differentiated human skeletal muscle cells using the Ca2+ imaging technique.
View Article and Find Full Text PDFLong-term application of the phorbol ester phorbol 12,13-dibutyrate (PDBu) inhibits the proliferation of human venous endothelial cells. The cyclin-dependent kinase inhibitor p21cip1 is a potential candidate mediating the PDBu-induced delayed entry of the cells into S-phase (by approximately 10 h when compared with cells stimulated with basic fibroblast growth factor (bFGF)). Levels of p21cip1 (protein and mRNA) rapidly rise (within approximately 2 h) in endothelial cells treated with the active isomer beta-PDBu, but not with alpha-PDBu; this effect is blocked by the mitogen-activated protein kinase kinase-1 (Mek1) inhibitor PD098059 and by the protein kinase C (PKC) antagonists GF109203X and rottlerin (selective for PKC-delta), but not Gö 6976 (selective for Ca2+-dependent PKC isoforms).
View Article and Find Full Text PDF