Equinus deformity is a common cause of foot and ankle pathology. The purpose of our study was to evaluate the role of the plantaris in equinus. Secondary aims were to describe the role of the plantaris in intramuscular gastrocnemius recession and to determine the prevalence of the plantaris in our patient population.
View Article and Find Full Text PDFPhysical unclonable functions are the physical equivalent of one-way mathematical transformations that, upon external excitation, can generate irreversible responses. Exceeding their mathematical counterparts, their inherent physical complexity renders them resilient to cloning and reverse engineering. When these features are combined with their time-invariant and deterministic operation, the necessity to store the responses (keys) in non-volatile means can be alleviated.
View Article and Find Full Text PDFWe report a nonlinear signal processing system based on a SiGe waveguide suitable for high spectral efficiency data signals. Four-wave-mixing (FWM)-based wavelength conversion of 10-Gbaud 16-Quadrature amplitude modulated (QAM) and 64-QAM signals is demonstrated with less than -10-dB conversion efficiency (CE), 36-dB idler optical signal-to-noise ratio (OSNR), negligible bit error ratio (BER) penalty and a 3-dB conversion bandwidth exceeding 30nm. The SiGe device was CW-pumped and operated in a passive scheme without giving rise to any two-photon absorption (TPA) effects.
View Article and Find Full Text PDFNeuro-inspired implementations have attracted strong interest as a power efficient and robust alternative to the digital model of computation with a broad range of applications. Especially, neuro-mimetic systems able to produce and process spike-encoding schemes can offer merits like high noise-resiliency and increased computational efficiency. Towards this direction, integrated photonics can be an auspicious platform due to its multi-GHz bandwidth, its high wall-plug efficiency and the strong similarity of its dynamics under excitation with biological spiking neurons.
View Article and Find Full Text PDFWe demonstrate broadband supercontinuum generation (SCG) in a dispersion-engineered silicon-germanium waveguide. The 3 cm long waveguide is pumped by femtosecond pulses at 2.4 μm, and the generated supercontinuum extends from 1.
View Article and Find Full Text PDF