Exerting morphological control over metal-organic frameworks (MOFs) is critical for determining their catalytic performance and to optimize their packing behavior in areas from separations to fuel gas storage. A mechanism-based approach to tailor the morphology of MOFs is introduced and experimentally demonstrated for five cubic Zn O-based MOFs. This methodology provides three key features: 1) computational screening for selection of appropriate additives to change crystal morphology based on knowledge of the crystal structure alone; 2) use of additive to metal cluster geometric relationships to achieve morphologies expressing desired crystallographic facets; 3) potential for suppression of interpenetration for certain phases.
View Article and Find Full Text PDFLinker exchange is a widely applied, robust technique for elaboration of metal-organic frameworks (MOFs) post-synthesis. The observation of core-shell microstructures under certain conditions was hypothesized to arise from diffusion rates into the MOF that are slower than linker exchange. Here the relative contributions of these processes are manipulated through solvent choice in order to modulate shell thickness and exchange extent.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) are generally synthesized in toxic formamide solvents. Greener solvents would lower production barriers and facilitate applications such as drug delivery. N,N-Diethyl-3-methylbenzamide (DEET), the most widely used insect repellent, is shown to serve this role.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2017
Exploratory research into the critical steps in metal-organic framework (MOF) activation involving solvent exchange and solvent evacuation are reported. It is discovered that solvent exchange kinetics are extremely fast, and minutes rather days are appropriate for solvent exchange in many MOFs. It is also demonstrated that choice of a very low surface tension solvent is critical in successfully activating challenging MOFs.
View Article and Find Full Text PDFA total of 18 competitive and recreational athletes were enrolled in a randomized, prospective study looking at the effect of pneumatic leg braces on the time to return to full activity after a tibial stress fracture. All patients had positive bone scans and 15 had positive radiographic findings by Week 12. There were two treatment groups.
View Article and Find Full Text PDF