Publications by authors named "A Kafar"

Ultrasmall micro-light-emitting diodes (μLEDs), sized below 10 μm, are indispensable to create the next-generation augmented and virtual reality (AR/VR) devices. Their high brightness and low power consumption could not only enhance the user experience by providing vivid and lifelike visuals but also extend device longevity. However, a notable challenge emerges: a decrease in efficiency with a reduced size.

View Article and Find Full Text PDF

This work reports on the possibility of sustaining a stable operation of polarization-doped InGaN light emitters over a particularly broad temperature range. We obtained efficient emission from InGaN light-emitting diodes between 20 K and 295 K and from laser diodes between 77 K and 295 K under continuous wave operation. The main part of the p-type layers was fabricated from composition-graded AlGaN.

View Article and Find Full Text PDF

The main objective of this work is to demonstrate and validate the feasibility of fabricating (Al, In) GaN laser diodes with etched facets. The facets are fabricated using a two-step dry and wet etching process: inductively coupled plasma-reactive ion etching in chlorine, followed by wet etching in tetramethylammonium hydroxide (TMAH). For the dry etching stage, an optimized procedure was used.

View Article and Find Full Text PDF

In this study, we propose a solution for realization of surface emitting, 2D array of visible light laser diodes based on AlInGaN semiconductors. The presented system consists of a horizontal cavity lasing section adjoined with beam deflecting section in the form of 45° inclined planes. They are placed in the close vicinity of etched vertical cavity mirrors that are fabricated by Reactive Ion Beam Etching.

View Article and Find Full Text PDF

Gallium nitride (GaN) doped with germanium at a level of 10 cm is proposed as a viable material for cladding layers in blue- and green-emitting laser diodes. Spectral reflectometry and ellipsometry are used to provide evidence of a reduced index of refraction in such layers. The refractive-index contrast to undoped GaN is about 0.

View Article and Find Full Text PDF