Surveillance is essential in the fight against antimicrobial resistance (AMR), to monitor the extent of resistance, inform prevention, control measures, and evaluate intervention progress. Traditional surveillance methods based on phenotypic antimicrobial susceptibility data offer important but limited insights into resistance mechanisms, transmission networks, and spread patterns of resistant bacterial strains. Fortunately, genomic technologies are increasingly accessible and can overcome these limitations.
View Article and Find Full Text PDFDrugs that induce reversible slowing of metabolic and physiological processes would have great value for organ preservation, especially for organs with high susceptibility to hypoxia-reperfusion injury, such as the heart. Using whole-organism screening of metabolism, mobility, and development in , we identified an existing drug, SNC80, that rapidly and reversibly slows biochemical and metabolic activities while preserving cell and tissue viability. Although SNC80 was developed as a delta opioid receptor activator, we discovered that its ability to slow metabolism is independent of its opioid modulating activity as a novel SNC80 analog (WB3) with almost 1000 times less delta opioid receptor binding activity is equally active.
View Article and Find Full Text PDFIntrapartum azithromycin prophylaxis has shown the potential to reduce maternal infections but showed no effect on neonatal sepsis and mortality. Antibiotic exposure early in life may affect gut microbiota development, leading to undesired consequences. Therefore, we here assessed the impact of 2 g oral intrapartum azithromycin on gut microbiota development from birth to the age of 3 years, by 16S-rRNA gene profiling of rectal samples from 127 healthy Gambian infants selected from a double-blind randomized placebo-controlled clinical trial (PregnAnZI-2).
View Article and Find Full Text PDFDespite remarkable advances in Organ-on-a-chip (Organ Chip) microfluidic culture technology, recreating tissue-relevant physiological conditions, such as the region-specific oxygen concentrations, remains a formidable technical challenge, and analysis of tissue functions is commonly carried out using one analytical technique at a time. Here, we describe two-channel Organ Chip microfluidic devices fabricated from polydimethylsiloxane and gas impermeable polycarbonate materials that are integrated with multiple sensors, mounted on a printed circuit board and operated using a commercially available Organ Chip culture instrument. The novelty of this system is that it enables the recreation of physiologically relevant tissue-tissue interfaces and oxygen tension as well as non-invasive continuous measurement of transepithelial electrical resistance, oxygen concentration and pH, combined with simultaneous analysis of cellular metabolic activity (ATP/ADP ratio), cell morphology, and tissue phenotype.
View Article and Find Full Text PDF