Publications by authors named "A K Senatorov"

We report on the development of a chirped pulse amplification (CPA) designed erbium fiber source with a hybrid high-power amplifier, which is composed of erbium-doped and erbium/ytterbium-co-doped double-clad large-mode-area fibers. Stretched pulses from the high-power amplifier with up to 21.9 µJ energy and 198.

View Article and Find Full Text PDF

It has been demonstrated experimentally for the first time, to the best of our knowledge, that reliable laser communication at 1.55 μm can be established with reentry spacecraft across the entire atmospheric descent trajectory as a way to avoid radio blackout. A plasma sheath with parameters similar to those around the spacecraft is reproduced at the Lomonosov Moscow State University Mechanics Institute Shock Tube Facility.

View Article and Find Full Text PDF

We have fabricated, to our knowledge, the first rectangular cross-section multicore fiber with eight cores arranged in a line. We have shown that the rectangular cross-section remains practically unchanged during the fiber-drawing process. The heterogeneous version of the proposed fiber design could be beneficial for crosstalk reduction because of the low influence of fiber bends on crosstalk between neighboring cores.

View Article and Find Full Text PDF

We proposed and investigated a novel type of all-glass hybrid fiber where light is confined in the low-index core due to both total internal reflection and coherent Fresnel reflection (a photonic bandgap mechanism). The hybrid mode has an anomalous dispersion of 13 ps/(nm km) at 1064 nm and low loss (~6 dB/km), and it can be easily excited by splicing with a single-mode step-index fiber. The compression of positively chirped 8 ps pulses down to 330 fs was demonstrated with the fabricated hybrid fiber.

View Article and Find Full Text PDF

A method for monitoring the manufacture of genetically engineered human insulin by HPLC was developed. The method was validated by the estimation of its linearity, correctness, accuracy, specificity, and stability; the limits of detection and quantitative assessment were also determined. It was proven that HPLC analysis enables reliable and reproducible results to be obtained and can be used for monitoring insulin manufacture.

View Article and Find Full Text PDF