Publications by authors named "A K Sedgwick"

Regions of hypoxia occur in most solid tumours and are known to significantly impact therapy response and patient prognosis. Ag5 is a recently reported silver molecular cluster which inhibits both glutathione and thioredoxin signalling therefore limiting cellular antioxidant capacity. Ag5 treatment significantly reduces cell viability in a range of cancer cell lines with little to no impact on non-transformed cells.

View Article and Find Full Text PDF

Hypoxia (low-oxygen) is one of the most common characteristics of solid tumours. Exploiting tumour hypoxia to reductively activate Pt(IV) prodrugs has the potential to deliver toxic Pt(II) selectively and thus overcome the systemic toxicity issues of traditional Pt(II) therapies. However, our current understanding of the behaviour of Pt(IV) prodrugs in hypoxia is limited.

View Article and Find Full Text PDF

Immuno-photodynamic therapy (IPDT) has emerged as a new modality for cancer treatment. Novel photosensitizers can help achieve the promise inherent in IPDT, namely, the complete eradication of a tumor without recurrence. We report here a small molecule photosensitizer conjugate, LuCXB.

View Article and Find Full Text PDF

We report the synthesis of 4-nitrophenyl (4-NP) functionalised Pt(iv) complexes as a colorimetric strategy for monitoring Pt(iv) reduction in aqueous solution. Treatment of each 4-NP functionalised Pt(iv) complex with the biological reductant sodium ascorbate led to a colour change from clear to yellow, which was attributed to the reduction of Pt(iv) to Pt(ii) and simultaneous release of 4-nitroaniline. Trends in reduction profiles and a photocatalysed reduction for each Pt(iv) complex were observed.

View Article and Find Full Text PDF

Photon-controlled pyroptosis activation (PhotoPyro) is a promising technique for cancer immunotherapy due to its noninvasive nature, precise control, and ease of operation. Here, we report that biomolecular photoredox catalysis in cells might be an important mechanism underlying PhotoPyro. Our findings reveal that the photocatalyst lutetium texaphyrin () facilitates rapid and direct photoredox oxidation of nicotinamide adenine dinucleotide, nicotinamide adenine dinucleotide phosphate, and various amino acids, thereby triggering pyroptosis through the caspase 3/GSDME pathway.

View Article and Find Full Text PDF