Publications by authors named "A K R Briffa"

Understanding the mechanistic basis of epigenetic memory has proven to be a difficult task due to the underlying complexity of the systems involved in its establishment and maintenance. Here, we review the role of computational modeling in helping to unlock this complexity, allowing the dissection of intricate feedback dynamics. We focus on three forms of epigenetic memory encoded in gene regulatory networks, DNA methylation, and histone modifications and discuss the important advantages offered by plant systems in their dissection.

View Article and Find Full Text PDF

Methylation of CG dinucleotides (mCGs), which regulates eukaryotic genome functions, is epigenetically propagated by Dnmt1/MET1 methyltransferases. How mCG is established and transmitted across generations despite imperfect enzyme fidelity is unclear. Whether mCG variation in natural populations is governed by genetic or epigenetic inheritance also remains mysterious.

View Article and Find Full Text PDF

Many modes and mechanisms of epigenetic inheritance have been elucidated in eukaryotes. Most of them are relatively short-term, generally not exceeding one or a few organismal generations. However, emerging evidence indicates that one mechanism, cytosine DNA methylation, can mediate epigenetic inheritance over much longer timescales, which are mostly or completely inaccessible in the laboratory.

View Article and Find Full Text PDF

Cytosine methylation within CG dinucleotides (mCG) can be epigenetically inherited over many generations. Such inheritance is thought to be mediated by a semiconservative mechanism that produces binary present/absent methylation patterns. However, we show here that, in Arabidopsis thaliana h1ddm1 mutants, intermediate heterochromatic mCG is stably inherited across many generations and is quantitatively associated with transposon expression.

View Article and Find Full Text PDF

Background: We investigated the effectiveness and durability of two types of plantar padding, the plantar metatarsal pad and the single wing plantar cover, which are commonly used for reducing forefoot plantar pressures.

Methods: Mean peak plantar pressure and impulse at the hallux and at the first, second, third, and fourth metatarsophalangeal joints across both feet were recorded using the two-step method in 18 individuals with normal asymptomatic feet. Plantar paddings were retained for 5 days, and their durability and effectiveness were assessed by repeating the foot plantar measurement at baseline and after 3 and 5 days.

View Article and Find Full Text PDF