Publications by authors named "A K Patra"

The oxidation kinetics of phenylalanine (Phe) by Ce(IV) have been examined in both the absence and presence of aqueous micellar media with asymmetric tails, specifically using sodium dodecyl sulfate (SDS) and sodium tetradecyl sulfate (STS) surfactants. The reaction progress was monitored by observing a decrease in absorbance using UV-vis spectroscopy. Interestingly, the kinetic profile revealed a consistent increase in the observed rate constant values as the concentration of the surfactant increased.

View Article and Find Full Text PDF

Cyclic alkyl(amino) carbene (cAAC)-supported phosphaalkenides (cAACP) have been employed as ligands for the isolation of two atomically precise mixed valence paramagnetic AgI/012Cl, and AgI/010, nano-clusters [(Me-cAACP)AgCl] (2), and [(Me-cAACP)Ag](NTf) (4). 2 and 4 have been structurally characterized by single-crystal X-ray diffraction revealing the presence of three Ag atoms, nine Ag ions (2); and two Ag atoms, eight Ag ions (4), respectively. The clustering inorganic unit AgCl in 2 has been found to be surrounded by six mono-anionic μ-cAACP moieties having 3-bar symmetry.

View Article and Find Full Text PDF

Atomically precise metal nanoclusters (MNCs) composed of a few to hundreds of metal atoms represent an emerging class of nanomaterials with a precise composition. With the size approaching the Fermi wavelength of electrons, their energy levels are well-separated, leading to molecule-like properties, like discrete single electronic transitions, tunable photoluminescence (PL), inherent structural anisotropy, and distinct redox behavior. Extensive synthetic efforts and electronic structure revelation have expanded applicability of MNCs in catalysis, optoelectronics, and biology.

View Article and Find Full Text PDF

Organic thermally activated delayed fluorescence (TADF) materials, known for their long-lived emission properties, are highly sought after for background-free imaging of selective analytes in time-resolved modes. However, their practical application faces significant challenges, including the air sensitivity of triplet states, lack of organelle specificity, and the absence of precise analyte recognition centres. These limitations hinder their effectiveness in detecting key cancer biomarkers such as nitroreductase (NTR).

View Article and Find Full Text PDF