Publications by authors named "A K Munoz"

A series of hydrophilic copolymers were prepared using 2-hydroxyethyl methacrylate (HEMA) and itaconic acid (IA) from free radical polymerization at different feed monomer ratios using ammonium persulfate (APS) initiators in water at 70 °C. The herbicide 2,4-dichlorophenoxy acetic acid (2,4-D) was grafted to Poly(HEMA--IA) by a condensation reaction. The hydrolysis of the polymeric release system, Poly(HEMA--IA)-2,4-D, demonstrated that the release of the herbicide in an aqueous phase depends on the polymeric system's pH value and hydrophilic character.

View Article and Find Full Text PDF

Mathematical modeling can offer valuable insights into the behavior of biological systems upon treatment. Different mathematical models (empirical, semi-empirical, and mechanistic) have been designed to predict the efficacy of either hyperthermia (HT), radiotherapy (RT), or their combination. However, mathematical approaches capable of modeling cell survival from shared general principles for both mono-treatments alone and their co-application are rare.

View Article and Find Full Text PDF

Background: Adipose tissue distribution plays a crucial role in the development of cardiovascular complications. In particular, visceral adipose tissue (VAT) has been linked to insulin resistance (IR) and cardiovascular disease (CVD). However, the relationship between VAT, cardiac dysfunction and the meditation capacity of VAT related to IR has not been fully characterized.

View Article and Find Full Text PDF

Introduction: First responders play a pivotal role in ensuring the wellbeing of individuals during critical situations. The demanding nature of their work exposes them to prolonged shifts and unpredictable situations, leading to elevated fatigue levels. Modern countermeasures to fatigue do not provide the best results.

View Article and Find Full Text PDF

Unlabelled: This assessment was designed to explore and characterize the airborne particles, especially for the sub-micrometer sizes, in an underground coal mine. Airborne particles present in the breathing zone were evaluated by using both (1) direct reading real-time instruments (RTIs) to measure real-time particle number concentrations in the workplaces and (2) gravimetric samplers to collect airborne particles to obtain mass concentrations and conduct further characterizations. Airborne coal mine particles were collected via three samplers: inhalable particle sampler (37 mm cassette with polyvinyl chloride (PVC) filter), respirable dust cyclone (10 mm nylon cyclone with 37 mm Zefon cassette and PVC filter), and a Tsai diffusion sampler (TDS).

View Article and Find Full Text PDF