Publications by authors named "A K L Dymoke-Bradshaw"

Article Synopsis
  • * This experiment produced 2.05 MJ of laser energy, resulting in 3.1 MJ of total fusion yield, which exceeds the Lawson criterion for ignition, demonstrating a key milestone in fusion research.
  • * The report details the advancements in target design, laser technology, and experimental methods that contributed to this historic achievement, validating over five decades of research in laboratory fusion.
View Article and Find Full Text PDF

Time-resolved x-ray self-emission imaging of hot spots in inertial confinement fusion experiments along several lines of sight provides critical information on the pressure and the transient morphology of the hot spot on the University of Rochester's OMEGA Laser System. At least three quasi-orthogonal lines of sight are required to infer the tomographic information of the hot spots of deuterium-tritium cryogenic layered implosions. OMEGA currently has two time-gated x-ray hot-spot imagers: the time-resolved Kirkpatrick-Baez x-ray microscope and the single-line-of-sight, time-resolved x-ray imager (SLOS-TRXI).

View Article and Find Full Text PDF

Electron tubes continue to provide the highest speeds possible for recording dynamics of hot high-energy density plasmas. Standard streak camera drive electronics and CCD readout are not compatible with the radiation environment associated with high DT fusion yield inertial confinement fusion experiments >10 14 MeV DT neutrons or >10 n cm ns. We describe a hardened x-ray streak camera developed for the National Ignition Facility and present preliminary results from the first experiment on which it has participated, recording the time-resolved bremsstrahlung spectrum from the core of an inertial confinement fusion implosion at more than 40× the operational neutron yield limit of the previous National Ignition Facility x-ray streak cameras.

View Article and Find Full Text PDF
Article Synopsis
  • * In inertially confined fusion, ignition allows the fusion process to spread into surrounding fuel, potentially leading to higher energy output.
  • * Recent experiments at the National Ignition Facility achieved capsule gains of 5.8 and approached ignition, even though "scientific breakeven" has not yet been fully realized.
View Article and Find Full Text PDF

The Cherenkov mechanism used in Gas Cherenkov Detectors (GCDs) is exceptionally fast. However, the temporal resolution of GCDs, such as the Gamma Reaction History diagnostic at the National Ignition Facility (NIF), has been limited by the current state-of-the-art photomultiplier tube technology to ∼100 ps. The soon-to-be deployed Pulse Dilation Photomultiplier Tube (PD-PMT) at NIF will allow for temporal resolution comparable to that of the gas cell or ∼10 ps.

View Article and Find Full Text PDF