Whole-brain mapping is an effective approach to investigate which brain areas are activated by the exploration of a novel environment. Previous studies analyzing neuronal activity promoted by novelty focused mostly on one specific area instead of the whole brain and measured activation using cfos immunohistochemistry. In this study, we utilized TRAP2 mice exposed to a novel and familiar environment to examine neuronal activity in exploratory, learning, and memory circuits.
View Article and Find Full Text PDFNowadays, technological developments towards advanced nano scale devices such as FinFETs and TFETs require a fundamental understanding of three-dimensional doping incorporation, activation and diffusion, as these details directly impact decisive parameters such as gate overlap and doping conformality and thus the device performance. Whereas novel doping methods such as plasma doping are presently exploited to meet these goals, their application needs to be coupled with new metrology approaches such as atom probe tomography, which provides the 3D-dopant distribution with atomic resolution. In order to highlight the relevant processes in terms of dopant conformality, 3D-diffusion, dopant activation and dopant clustering, in this paper we report on 3D-doping and diffusion phenomena in silicon FinFET devices.
View Article and Find Full Text PDFWith the transition from planar to three-dimensional device architectures such as Fin field-effect-transistors (FinFETs), new metrology approaches are required to meet the needs of semiconductor technology. It is important to characterize the 3D-dopant distributions precisely as their extent, positioning relative to gate edges and absolute concentration determine the device performance in great detail. At present the atom probe has shown its ability to analyze dopant distributions in semiconductor and thin insulating materials with sub-nm 3D-resolution and good dopant sensitivity.
View Article and Find Full Text PDFGe(1-x)Sn(x) is receiving a growing interest in the scientific community, as it has important applications in opto-electronic devices, ( as stressor) Source/Drain materials for Ge and SiGe MOSFETS. It is predicted that at 10% Sn concentration or even lower, unstrained Ge(1-x)Sn(x) will exhibit a direct band gap. Moreover, in strained Ge(1-x)Sn(x) the expected concentration of Sn for this cross-over is even lower.
View Article and Find Full Text PDFThe laser-assisted Atom Probe has been proposed as a metrology tool for next generation semiconductor technologies requiring sub-nm spatial resolution. In order to assess its potential for the analysis of three-dimensional semiconductor structures like FinFETs, we have studied the Atom Probes lateral resolution on a silicon, silicon-germanium multilayer structure. We find that the interactions of the laser with the semiconductor materials in the sample distort the sample surface.
View Article and Find Full Text PDF