Publications by authors named "A K Glian'ko"

The effect of exogenous calcium (Ca2+) and rhizobial infections (Rhizobium leguminosarum bv viceae) on the dynamics of the level of nitric oxide (NO) was studied in cross cuts of roots of two-day-old etiolated pea seedlings (Pisum sativum L.) using a DAF-2DA fluorescent probe. Fluctuations of the NO level, indicating the presence of a rhythm in the generation of NO in roots, were observed during the incubation of seedlings in water, a CaCl2 solution, and with rhizobial infections.

View Article and Find Full Text PDF

Data regarding the interrelation of nitric oxide (NO) content in roots of 3-day-old etiolated pea seedlings and their growth under different concentrations of N-containing compounds were obtained. The concentration of exogenous compounds (sodium nitroprusside SNP, KNO3, NaNO2, L-arginine) rendering an inhibiting effect on the growth of roots were established, and the NO content in roots was determined at these concentration. It was shown that the inhibition of growth and highest NO content in the roots was determined with SNP (4 mM) and NaNO2 (2 mM) during 24 h exposition of seedlings.

View Article and Find Full Text PDF

Changes in the functional activity of the NADPH oxidase in the microsomal fraction of roots of etiolated pea seedlings, caused by rhizobial inoculation and calcium ions (Ca2+), are shown. The enzyme activity in a medium with an exogenous source of Ca2+ (CaCl2, 100 microM) fluctuated, increasing 5 to 20 min and decreasing 10 and 30 min after addition. A calcium chelator (ethylene glycol tetraacetic acid (EDTA), 100 microM) potentiated the decrease in the enzyme activity in the presence of exogenous calcium.

View Article and Find Full Text PDF

The article studies the nitric oxide (NO) levels in the roots of etiolated seedlings of garden peas (Pisum sativum L.) using the DAF-2DA fluorescent probe and fluorescent microscopy. Cross sections of roots of 100-150 microm (the site of a root which is 10-15 mm from the apex) are analyzed.

View Article and Find Full Text PDF

Data on structural and functional characteristics of plant NADPH oxidase (Rboh) are generalized. The enzyme homologs identical to the subunit gp91(phox) of the enzymatic complex of animal cells were found in plants. The activation of Rboh depends on the influx of Ca2+ into the cytoplasm and phosphorylation of the N-terminal region of the enzyme by Ca(2+)-dependent protein kinase.

View Article and Find Full Text PDF