Astrocytes control brain activity via both metabolic processes and gliotransmission, but the physiological links between these functions are scantly known. Here we show that endogenous activation of astrocyte type-1 cannabinoid (CB1) receptors determines a shift of glycolysis towards the lactate-dependent production of D-serine, thereby gating synaptic and cognitive functions in male mice. Mutant mice lacking the CB1 receptor gene in astrocytes (GFAP-CB1-KO) are impaired in novel object recognition (NOR) memory.
View Article and Find Full Text PDFThe goal of neurocritical care is to prevent and reverse the pathologic cascades of secondary brain injury by optimizing cerebral blood flow, oxygen supply and substrate delivery. While glucose is an essential energetic substrate for the brain, we frequently observe a strong decrease in glucose delivery and/or a glucose metabolic dysregulation following acute brain injury. In parallel, during the last decades, lactate and ketone bodies have been identified as potential alternative fuels to provide energy to the brain, both under physiological conditions and in case of glucose shortage.
View Article and Find Full Text PDFEnergy metabolism is essential for brain function. In recent years, lactate shuttling between astrocytes and neurons has become a fundamental concept of neuroenergetics. However, it remains unclear to what extent this process is critical for different aspects of cognition, their underlying mechanisms, as well as for the signals used to monitor brain activation.
View Article and Find Full Text PDFDue to the rate of occurrence of neonatal hypoxia-ischemia, its neuronal sequelae, and the lack of effective therapies, the development of new neuroprotective strategies is required. Polyphenols (including resveratrol) are molecules whose anti-apoptotic, anti-inflammatory, and anti-oxidative properties could be effective against the damage induced by neonatal hypoxia-ischemia. In this review article, very recent data concerning the neuroprotective role of polyphenols and the mechanisms at play are detailed, including a boost in brain energy metabolism.
View Article and Find Full Text PDFPolyphenols are natural compounds with promising prophylactic and therapeutic applications. However, their methods of extraction, using organic solvents, may prove to be unsuitable for daily consumption or for certain medical indications. Here, we describe the neuroprotective effects of grape polyphenols extracted in an eco-sustainable manner in a rat model of neonatal hypoxia-ischemia (NHI).
View Article and Find Full Text PDF