In 2016 and 2017, the 8th and 9th 4D treatment planning workshop took place in Groningen (the Netherlands) and Vienna (Austria), respectively. This annual workshop brings together international experts to discuss research, advances in clinical implementation as well as problems and challenges in 4D treatment planning, mainly in spot scanned proton therapy. In the last two years several aspects like treatment planning, beam delivery, Monte Carlo simulations, motion modeling and monitoring, QA phantoms as well as 4D imaging were thoroughly discussed.
View Article and Find Full Text PDFProton radiography is a novel imaging modality that allows direct measurement of the proton energy loss in various tissues. Currently, due to the conversion of so-called Hounsfield units from X-ray Computed Tomography (CT) into relative proton stopping powers (RPSP), the uncertainties of RPSP are 3-5% or higher, which need to be minimized down to 1% to make the proton treatment plans more accurate. In this work, we simulated a proton radiography system, with position-sensitive detectors (PSDs) and a residual energy detector (RED).
View Article and Find Full Text PDFThe use of nanoparticles to enhance the effect of radiation-based cancer treatments is a growing field of study and recently, even nanoparticle-induced improvement of proton therapy performance has been investigated. Aiming at a clinical implementation of this approach, it is essential to characterize the mechanisms underlying the synergistic effects of nanoparticles combined with proton irradiation. In this study, we investigated the effect of platinum- and gadolinium-based nanoparticles on the nanoscale damage induced by a proton beam of therapeutically relevant energy (150 MeV) using plasmid DNA molecular probe.
View Article and Find Full Text PDFThe development of a proton radiography system to improve the imaging of patients in proton beam therapy is described. The system comprises gridpix based time projection chambers, which are based on the Timepix chip designed by the Medipix collaboration, for tracking the protons. This type of detector was chosen to have minimal impact on the actual determination of the proton tracks by the tracking detectors.
View Article and Find Full Text PDFThe only method for in vivo dose delivery verification in proton beam radiotherapy in clinical use today is positron emission tomography (PET) of the positron emitters produced in the patient during irradiation. PET imaging while the beam is on (so called beam-on PET) is an attractive option, providing the largest number of counts, the least biological washout and the fastest feedback. In this implementation, all nuclides, independent of their half-life, will contribute.
View Article and Find Full Text PDF