This study explores Zeolitic Imidazolate Frameworks (ZIFs) as promising materials for adsorbing alcohol vapors, one of the main contributors to air quality deterioration and adverse health effects. Indeed, this sub-class of Metal-Organic Frameworks (MOFs) offers a promising alternative to conventional adsorbents like zeolites and activated carbons for air purification. Specifically, this investigation focuses on ZIF-8_Br, a brominated version of ZIF-8_CH, to evaluate its ability to capture aliphatic alcohols at lower partial pressures.
View Article and Find Full Text PDFShaping Metal-Organic Frameworks (MOFs) poses a significant challenge for their widespread application on a large scale. In particular, a precise control over crystal orientation and arrangement on substrates are expected to provide exiting opportunities for novel materials with customized characteristics and enhanced performance in catalysis, gas storage, sensing, optics and electronics. Here we demonstrated for the first time that microwave irradiation can induce well controlled epitaxial growth of urchin-like MIL-53(Al) crystals via the hydrothermal conversion of Atomic Layer Deposition alumina layers on SiC foams.
View Article and Find Full Text PDFMetal-Organic Frameworks (MOFs) are particularly attractive sorbents with great potential for the removal of toxic dye pollutants from industrial wastewaters. The uniform dispersion of MOF particles on suitable substrates then represents a key condition to improve their processability and provide good accessibility to the active sites. In this work, we investigate the efficiency of a natural bacterial cellulose material derived from Kombucha (KBC) as an active functional support for growing and anchoring MOF particles with UiO-66 structures.
View Article and Find Full Text PDFA series of four isoreticular MOFs (IRMOF-1, -10, -14, and -16) were selected for a computational investigation of the effect of ligand aromaticity on the adsorption capacity of an aromatic VOC (benzene) compared to its nonaromatic analog (cyclohexane). The affinity of the adsorbates was evaluated by calculating Henry's constants and adsorption enthalpies. It has been evidenced that while values decrease with ligand elongation (IRMOF-10 and -16), inserting a pyrene core into the MOF structure (IRMOF-14) increases both the cyclohexane and benzene adsorption efficiency by ∼290 and 54%, respectively.
View Article and Find Full Text PDFPhotocatalytically active silicon carbide (SiC)-based mesoporous layers (pore sizes between 5 and 30 nm) were synthesized from preceramic polymers (polymer-derived ceramic route) on the surface and inside the pores of conventional macroporous α-alumina supports. The hybrid membrane system obtained, coupling the separation and photocatalytical properties of SiC thin films, was characterized by different static and dynamic techniques, including gas and liquid permeation measurements. The photocatalytic activity was evaluated by considering the degradation efficiency of a model organic pollutant (methylene blue, MB) under UV light irradiation in both diffusion and permeation modes using SiC-coated macroporous supports.
View Article and Find Full Text PDF