The date palm is economically vital in the Middle East and North Africa, providing essential fibres, vitamins, and carbohydrates. Understanding the genetic architecture of its traits remains complex due to the tree's perennial nature and long generation times. This study aims to address these complexities by employing advanced genome-wide association (GWAS) and genomic prediction models using previously published data involving fruit acid content, sugar content, dimension, and colour traits.
View Article and Find Full Text PDFThe integration of genomic prediction with crop growth models enabled the estimation of missing environmental variables which improved the prediction accuracy of grain yield. Since the invention of whole-genome prediction (WGP) more than two decades ago, breeding programmes have established extensive reference populations that are cultivated under diverse environmental conditions. The introduction of the CGM-WGP model, which integrates crop growth models (CGM) with WGP, has expanded the applications of WGP to the prediction of unphenotyped traits in untested environments, including future climates.
View Article and Find Full Text PDFRunning crop growth models (CGM) coupled with whole genome prediction (WGP) as a CGM-WGP model introduces environmental information to WGP and genomic relatedness information to the genotype-specific parameters modelled through CGMs. Previous studies have primarily used CGM-WGP to infer prediction accuracy without exploring its potential to enhance CGM and WGP. Here, we implemented a heading and maturity date wheat phenology model within a CGM-WGP framework and compared it with CGM and WGP.
View Article and Find Full Text PDF