Societally relevant weather impacts typically result from compound events, which are rare combinations of weather and climate drivers. Focussing on four event types arising from different combinations of climate variables across space and time, here we illustrate that robust analyses of compound events - such as frequency and uncertainty analysis under present-day and future conditions, event attribution to climate change, and exploration of low-probability-high-impact events - require data with very large sample size. In particular, the required sample is much larger than that needed for analyses of univariate extremes.
View Article and Find Full Text PDFDiagnosing dynamical changes in the climate system, such as those in atmospheric circulation patterns, remains challenging. Here, we study 1950 to 2021 trends in the frequency of occurrence of atmospheric circulation patterns over the North Atlantic. Roughly 7% of atmospheric circulation patterns display significant occurrence trends, yet they have major impacts on surface climate.
View Article and Find Full Text PDFThe severe drought of the 1930s Dust Bowl decade coincided with record-breaking summer heatwaves that contributed to the socio-economic and ecological disaster over North America's Great Plains. It remains unresolved to what extent these exceptional heatwaves, hotter than in historically forced coupled climate model simulations, were forced by sea surface temperatures (SSTs) and exacerbated through human-induced deterioration of land cover. Here we show, using an atmospheric-only model, that anomalously warm North Atlantic SSTs enhance heatwave activity through an association with drier spring conditions resulting from weaker moisture transport.
View Article and Find Full Text PDFDespite the importance of having robust estimates of the time-asymptotic total number of infections, early estimates of COVID-19 show enormous fluctuations. Using COVID-19 data from different countries, we show that predictions are extremely sensitive to the reporting protocol and crucially depend on the last available data point before the maximum number of daily infections is reached. We propose a physical explanation for this sensitivity, using a susceptible-exposed-infected-recovered model, where the parameters are stochastically perturbed to simulate the difficulty in detecting patients, different confinement measures taken by different countries, as well as changes in the virus characteristics.
View Article and Find Full Text PDF