Study Design: Prospective, randomized, controlled preclinical study.
Objective: The objective of this study was to compare the host inflammatory response of our previously described hyperelastic, 3D-printed (3DP) hydroxyapatite (HA)-demineralized bone matrix (DBM) composite scaffold to the response elicited with the use of recombinant human bone morphogenetic protein-2 (rhBMP-2) in a preclinical rat posterolateral lumbar fusion model.
Summary Of Background Data: Our group previously found that this 3D-printed HA-DBM composite material shows promise as a bone graft substitute in a preclinical rodent model, but its safety profile had yet to be assessed.
At the present time there are no consistently satisfactory treatment options for some challenging bone loss scenarios. We have previously reported on the properties of a novel 3D-printed hydroxyapatite-composite material in a pilot study, which demonstrated osteoconductive properties but was not tested in a rigorous, clinically relevant model. We therefore utilized a rat critical-sized femoral defect model with a scaffold designed to match the dimensions of the bone defect.
View Article and Find Full Text PDFWe recently developed a recombinant growth factor-free bone regenerative scaffold composed of stoichiometric hydroxyapatite (HA) ceramic particles and human demineralized bone matrix (DBM) particles (HA-DBM). Here, we performed the first pre-clinical comparative evaluation of HA-DBM relative to the industry standard and established positive control, recombinant human bone morphogenetic protein-2 (rhBMP-2), using a rat posterolateral spinal fusion model (PLF). Female Sprague-Dawley rats underwent bilateral L4-L5 PLF with implantation of the HA-DBM scaffold or rhBMP-2.
View Article and Find Full Text PDFRecent research in tissue engineering and regenerative medicine has elucidated the importance of the matrisome. The matrisome, effectively the skeleton of an organ, provides physical and biochemical cues that drive important processes such as differentiation, proliferation, migration, and cellular morphology. Leveraging the matrisome to control these and other tissue-specific processes will be key to developing transplantable bioprosthetics.
View Article and Find Full Text PDFRegenerative repair of craniomaxillofacial bone injuries is challenging due to both the large size and irregular shape of many defects. Mineralized collagen scaffolds have previously been shown to be a promising biomaterial implant to accelerate craniofacial bone regeneration in vivo. Here we describe inclusion of a 3D-printed polymer or ceramic-based mesh into a mineralized collagen scaffold to improve mechanical and biological activity.
View Article and Find Full Text PDF