Ray tracing in gradient-index (GRIN) media has been thoroughly studied and several ray tracing methods have been proposed. Methods are based on finding the ray path given a known GRIN. In recent decades, the inverse problem, which consists of finding the GRIN distribution for a given light ray path, has been gaining attention.
View Article and Find Full Text PDFRay tracing in gradient-index (GRIN) media has been traditionally performed either by using the analytical or numerical solutions to the Eikonal equation or by creating a layered medium where Snell's law is calculated in each layer. In this paper, an exact general method to perform ray tracing in GRIN media is presented based on the invariants of the system as stated by Fermat's principle when the media presents symmetries. Its advantage, compared with other methods reported in the literature, relies on its easy implementation.
View Article and Find Full Text PDFTo the best of our knowledge, at the present time there is no answer to the fundamental question stated in the title that provides a complete and satisfactory physical description of the structured nature of Hermite-Gauss beams. The purpose of this manuscript is to provide proper answers supported by a rigorous mathematical-physics framework that is physically consistent with the observed propagation of these beams under different circumstances. In the process we identify that the paraxial approximation introduces spurious effects in the solutions that are unphysical.
View Article and Find Full Text PDFIt is well known that optics and classical mechanics are intimately related. One of the most important concepts in classical mechanics is that of a particle in a central potential that leads to the Newtonian description of the planetary dynamics. Within this, a relevant result is Kepler's second law that is related to the conservation of orbital angular momentum, one of the fundamental laws in physics.
View Article and Find Full Text PDFThe lens is a complex optical component of the human eye because of its physiological structure: the surface is aspherical and the structural entities create a gradient refractive index (GRIN). Most existent models of the lens deal with its external shape independently of the refractive index and, subsequently, through optimization processes, adjust the imaging properties. In this paper, we propose a physiologically realistic GRIN model of the lens based on a single function for the whole lens that accurately describes different accommodative states simultaneously providing the corresponding refractive index distribution and the external shape of the lens by changing a single parameter that we associate with the function of the ciliary body.
View Article and Find Full Text PDF