Publications by authors named "A J de Sanctis"

Feather analysis is an ethical and effective method for assessing the exposure of wild birds to environmental contamination due to trace elements and organic pollutants. We used feather to monitor the exposure to three toxic and non-essential metals (Hg, Cd, and Pb) and rare earth elements (REEs) of Kentish plover (Charadrius alexandrinus) breeding in different coastal areas (Veneto, Emilia-Romagna, Marche, Abruzzo, and Apulia) along the Italian coast of the Adriatic Sea. Feathers (n = 113) were collected from April to June.

View Article and Find Full Text PDF

The aim of this paper is to investigate whether a multifractal analysis can be applied to study choroidal blood vessels and help ophthalmologists in the early diagnosis of retinitis pigmentosa (RP). In a case study, we used spectral domain optical coherence tomography (SDOCT), which is a noninvasive and highly sensitive imaging technique of the retina and choroid. The image of a choroidal branching pattern can be regarded as a multifractal.

View Article and Find Full Text PDF
Article Synopsis
  • Tailoring band gaps in semiconductors is crucial for creating innovative devices, typically done through energetic ion implantation, but 2D materials offer new methods via their sensitivity to surrounding dielectrics.
  • Researchers have demonstrated significant changes in the exciton binding energy of monolayer WSe by varying the dielectric constant, achieving a reduction of up to 300 meV with increased dielectric values.
  • The findings correlate well with theoretical predictions from a Mott-Wannier model, and the study suggests that manipulating the dielectric environment could lead to exciton metamaterials through potential-well arrays in 2D materials.
View Article and Find Full Text PDF

To fully exploit van der Waals materials and their vertically stacked heterostructures, new mass-scalable production routes which are low cost but preserve the high electronic and optical quality of the single crystals are required. Here, we demonstrate an approach to realise a variety of functional heterostructures based on van der Waals nanocrystal films produced through the mechanical abrasion of bulk powders. We find significant performance enhancements in abraded heterostructures compared to those fabricated through inkjet printing of nanocrystal dispersions.

View Article and Find Full Text PDF

Similar to silicon-based semiconductor devices, van der Waals heterostructures require integration with high- oxides. Here, we demonstrate a method to embed and pattern a multifunctional few-nanometer-thick high- oxide within various van der Waals devices without degrading the properties of the neighboring two-dimensional materials. This transformation allows for the creation of several fundamental nanoelectronic and optoelectronic devices, including flexible Schottky barrier field-effect transistors, dual-gated graphene transistors, and vertical light-emitting/detecting tunneling transistors.

View Article and Find Full Text PDF