Gastrointestinal endoscopic image analysis presents significant challenges, such as considerable variations in quality due to the challenging in-body imaging environment, the often-subtle nature of abnormalities with low interobserver agreement, and the need for real-time processing. These challenges pose strong requirements on the performance, generalization, robustness and complexity of deep learning-based techniques in such safety-critical applications. While Convolutional Neural Networks (CNNs) have been the go-to architecture for endoscopic image analysis, recent successes of the Transformer architecture in computer vision raise the possibility to update this conclusion.
View Article and Find Full Text PDFBackground And Aims: Characterization of visible abnormalities in patients with Barrett's esophagus (BE) can be challenging, especially for inexperienced endoscopists. This results in suboptimal diagnostic accuracy and poor interobserver agreement. Computer-aided diagnosis (CADx) systems may assist endoscopists.
View Article and Find Full Text PDFBackground And Aims: This pilot study evaluated the performance of a recently developed computer-aided detection (CADe) system for Barrett's neoplasia during live endoscopic procedures.
Methods: Fifteen patients with a visible lesion and 15 without were included in this study. A CAD-assisted workflow was used that included a slow pullback video recording of the entire Barrett's segment with live CADe assistance, followed by CADe-assisted level-based video recordings every 2 cm of the Barrett's segment.