Publications by authors named "A J Wiltshire"

Background: Movement and tone disorders in children and young adults with cerebral palsy are a great source of disability. Deep brain stimulation (DBS) of basal ganglia targets has a major role in the treatment of isolated dystonias, but its efficacy in dyskinetic cerebral palsy (DCP) is lower, due to structural basal ganglia and thalamic damage and lack of improvement of comorbid choreoathetosis and spasticity. The cerebellum is an attractive target for DBS in DCP since it is frequently spared from hypoxic ischemic damage, it has a significant role in dystonia network models, and small studies have shown promise of dentate stimulation in improving CP-related movement and tone disorders.

View Article and Find Full Text PDF

Background: Movement and tone disorders in children and young adults with cerebral palsy are a great source of disability. Deep brain stimulation (DBS) of basal ganglia targets has a major role in the treatment of isolated dystonias, but its efficacy in dyskinetic cerebral palsy (DCP) is lower, due to structural basal ganglia and thalamic damage and lack of improvement of comorbid choreoathetosis and spasticity. The cerebellum is an attractive target for DBS in DCP since it is frequently spared from hypoxic ischemic damage, it has a significant role in dystonia network models, and small studies have shown promise of dentate stimulation in improving CP-related movement and tone disorders.

View Article and Find Full Text PDF

Despite substantial advancements in the field of cryobiology, oocyte and embryo cryopreservation still compromise developmental competence. Furthermore, dimethyl sulfoxide (DMSO), one of the most commonly used cryoprotectants, has been found to exert potent effects on the epigenetic landscape of cultured human cells, as well as mouse oocytes and embryos. Little is known about its impact on human oocytes.

View Article and Find Full Text PDF

The telomere length of human blastocysts exceeds that of oocytes and telomerase activity increases after zygotic activation, peaking at the blastocyst stage. Yet, it is unknown whether aneuploid human embryos at the blastocyst stage exhibit a different profile of telomere length, telomerase gene expression, and telomerase activity compared to euploid embryos. In present study, 154 cryopreserved human blastocysts, donated by consenting patients, were thawed and assayed for telomere length, telomerase gene expression, and telomerase activity using real-time PCR (qPCR) and immunofluorescence (IF) staining.

View Article and Find Full Text PDF