Publications by authors named "A J Speksnijder"

Targeted metagenomics is a rapidly expanding technology to analyze complex biological samples and genetic monitoring of environmental samples. In this research field, data analytical aspects play a crucial role. In order to teach targeted metagenomics data analysis, we developed a 4-week inquiry-driven modular course-based undergraduate research experience (mCURE) using publicly available Australian coral microbiome DNA sequencing data and associated metadata.

View Article and Find Full Text PDF

Background: NAFLD progression, from steatosis to inflammation and fibrosis, results from an interplay of intra- and extrahepatic mechanisms. Disease drivers likely include signals from white adipose tissue (WAT) and gut. However, the temporal dynamics of disease development remain poorly understood.

View Article and Find Full Text PDF

Freshwater habitats are under stress from agricultural land use, most notably the influx of neonicotinoid pesticides and increased nutrient pressure from fertilizer. Traditional studies investigating the effects of stressors on freshwater systems are often limited to a narrow range of taxa, depending heavily on morphological expertise. Additionally, disentanglement of multiple simultaneous stressors can be difficult in field studies, whereas controlled laboratory conditions do not accurately reflect natural conditions and food webs.

View Article and Find Full Text PDF

The hydrozoan species (Hargitt, 1924) is widely distributed in tropical marine waters around the world. Here we report the complete linear mitochondrial genome of from Sint Eustatius (Lesser Antilles). The mitochondrial genome with a length of 14,320 bp encodes for 13 protein-coding genes, two tRNA genes, and two rRNA genes.

View Article and Find Full Text PDF

Airborne pollen monitoring is of global socio-economic importance as it provides information on presence and prevalence of allergenic pollen in ambient air. Traditionally, this task has been performed by microscopic investigation, but novel techniques are being developed to automate this process. Among these, DNA metabarcoding has the highest potential of increasing the taxonomic resolution, but uncertainty exists about whether the results can be used to quantify pollen abundance.

View Article and Find Full Text PDF