Publications by authors named "A J Millis"

Bilayer materials may support interlayer excitons comprised of electrons in one layer and holes in the other. In experiments, a nonzero exciton density is typically sustained by a bias chemical potential, implemented either by optical pumping or by electrical contacts connected to the two layers. We show that if charge can tunnel between the layers, the chemical potential bias means that an exciton condensate is in the dynamical regime of ac Josephson effect.

View Article and Find Full Text PDF

Ultraclean graphene at charge neutrality hosts a quantum critical Dirac fluid of interacting electrons and holes. Interactions profoundly affect the charge dynamics of graphene, which is encoded in the properties of its electron-photon collective modes: surface plasmon polaritons (SPPs). Here, we show that polaritonic interference patterns are particularly well suited to unveil the interactions in Dirac fluids by tracking polaritonic interference in time at temporal scales commensurate with the electronic scattering.

View Article and Find Full Text PDF

The unusual structure and symmetry of low-energy states in twisted transition metal dichalcogenides leads to large in-plane spin-exchange interactions between spin-valley locked holes. We demonstrate that this exchange interaction can stabilize a gapped spin-liquid phase with a quantized spin-Chern number of 3 when the twist angle is sufficiently small and the system lies in a Mott insulating phase. The gapped spin liquid may be understood as arising from spinon pairing in the DIII Altland-Zirnbauer symmetry class.

View Article and Find Full Text PDF

The continued development of computational approaches to many-body ground-state problems in physics and chemistry calls for a consistent way to assess its overall progress. In this work, we introduce a metric of variational accuracy, the V-score, obtained from the variational energy and its variance. We provide an extensive curated dataset of variational calculations of many-body quantum systems, identifying cases where state-of-the-art numerical approaches show limited accuracy and future algorithms or computational platforms, such as quantum computing, could provide improved accuracy.

View Article and Find Full Text PDF

We use a real-space slave-rotor theory of the physics of topological Mott insulators, using the Kane-Mele-Hubbard model as an example, and show that a topological gap in the Green function zeros corresponds to a gap in the bulk spinon spectrum and implies a gapless band of edge zeros and a spinon edge mode. We then consider an interface between a topological Mott insulator and a conventional topological insulator showing how the spinon edge mode of the topological Mott insulator combines with the spin part of the conventional electron topological edge state, leaving a non-Fermi liquid edge mode described by a gapless propagating holon and gapped spinon state. Our work demonstrates the physical meaning of Green function zeros and shows that interfaces between conventional and Mott topological insulators are a rich source of new physics.

View Article and Find Full Text PDF