Publications by authors named "A J Downard"

Nanotechnology has delivered an amazing range of new materials such as nanowires, tubes, ribbons, belts, cages, flowers, and sheets. However, these are usually circular, cylindrical, or hexagonal in nature, while nanostructures with square geometries are comparatively rare. Here, a highly scalable method is reported for producing vertically aligned Sb-doped SnO nanotubes with perfectly-square geometries on Au nanoparticle covered m-plane sapphire using mist chemical vapor deposition.

View Article and Find Full Text PDF

A new coupling reaction, the -fluoro-thiol (PFT) reaction, activated by base at room temperature, is reported for carbon surface functionalization. 4-Nitrothiophenol (4-NTP) and (3-nitrobenzyl)mercaptan (3-NBM) were coupled to pentafluorophenyl (F-Ph) anchor layers grafted from the aryldiazonium ion formed . The relative yields of the PFT reactions, estimated from the electrochemical responses of coupled nitrophenyl (NP) and nitrobenzyl (NB) groups, depended on the nucleophilicity of the thiolate and the strength of the base.

View Article and Find Full Text PDF

ZnO is a strong candidate for transparent electronic devices due to its wide band gap and earth-abundance, yet its practical use is limited by its surface metallicity arising from a surface electron accumulation layer (SEAL). The SEAL forms by hydroxylation of the surface under normal atmospheric conditions, and is present at all crystal faces of ZnO, although with differing hydroxyl structures. Multilayer aryl films grafted from aryldiazonium salts have previously been shown to decrease the downward bending at O-polar ZnO thin films, with Zn-O-C bonds anchoring the aryl films to the substrate.

View Article and Find Full Text PDF

Aryldiazonium ions are widely used reagents for surface modification. Attractive aspects of their use include wide substrate compatibility (ranging from plastics to carbons to metals and metal oxides), formation of stable covalent bonding to the substrate, simplicity of modification methods that are compatible with organic and aqueous solvents, and the commercial availability of many aniline precursors with a straightforward conversion to the active reagent. Importantly, the strong bonding of the modifying layer to the surface makes the method ideally suited to further on-surface (postfunctionalization) chemistry.

View Article and Find Full Text PDF

Nanoparticle silicon-graphite composite electrodes are a viable way to advance the cycle life and energy density of lithium-ion batteries. However, characterization of composite electrode architectures is complicated by the heterogeneous mixture of electrode components and nanoscale diameter of particles, which falls beneath the lateral and depth resolution of most laboratory-based instruments. In this work, we report an original laboratory-based scanning probe microscopy approach to investigate composite electrode microstructures with nanometer-scale resolution via contrast in the electronic properties of electrode components.

View Article and Find Full Text PDF