Purpose: In preclinical models, glucocorticoid receptor (GR) signaling drives resistance to taxane chemotherapy in multiple solid tumors via upregulation of antiapoptotic pathways. ORIC-101 is a potent and selective GR antagonist that was investigated in combination with taxane chemotherapy as an anticancer regimen preclinically and in a phase 1 clinical trial.
Patients And Methods: The ability of ORIC-101 to reverse taxane resistance was assessed in cell lines and xenograft models, and a phase 1 study (NCT03928314) was conducted in patients with advanced solid tumors to determine the dose, safety, and antitumor activity of ORIC-101 with nab-paclitaxel.
Purpose: Increased glucocorticoid receptor (GR) signaling is a proposed compensatory mechanism of resistance to androgen receptor (AR) inhibition in metastatic castration-resistant prostate cancer (mCRPC). ORIC-101 is a potent and selective orally-bioavailable GR antagonist.
Patients And Methods: Safety, pharmacokinetic/pharmacodynamic, and antitumor activity of ORIC-101 in combination with enzalutamide were studied in patients with mCRPC progressing on enzalutamide.
Unlabelled: The FOXA1 pioneer factor is an essential mediator of steroid receptor function in multiple hormone-dependent cancers, including breast and prostate cancers, enabling nuclear receptors such as estrogen receptor (ER) and androgen receptor (AR) to activate lineage-specific growth programs. FOXA1 is also highly expressed in non-small cell lung cancer (NSCLC), but whether and how it regulates tumor growth in this context is not known. Analyzing data from loss-of-function screens, we identified a subset of NSCLC tumor lines where proliferation is FOXA1 dependent.
View Article and Find Full Text PDF(estrogen receptor 1) hotspot mutations are major contributors to therapeutic resistance in estrogen receptor-positive (ER) breast cancer. Such mutations confer estrogen independence to ERα, providing a selective advantage in the presence of estrogen-depleting aromatase inhibitors. In addition, mutations reduce the potency of tamoxifen and fulvestrant, therapies that bind ERα directly.
View Article and Find Full Text PDF