To assess the physiologic and clinical relevance of newer noninvasive measures of vascular compliance, computerized arterial pulse waveform analysis (CAPWA) of the radial pulse was used to calculate two components of compliance, C1 (capacitive) and C2 (oscillatory or reflective), in 87 normotensive (N1BP, n = 20), untreated hypertensive (HiBP, n = 21), and treated hypertensive (HiBP-Rx, n = 46) subjects. These values were compared with two other indices of compliance, the ratio of stroke volume to pulse pressure (SV/PP) and magnetic resonance imaging (MRI)-based aortic distensibility; and were also correlated with demographic and biochemical values. The HiBP subjects displayed lower C1 (1.
View Article and Find Full Text PDFTo investigate the contribution of vascular compliance to essential hypertension (EH), we developed magnetic resonance imaging (MRI) techniques to directly measure aortic distensibility (AD) in the ascending and descending thoracic and abdominal aorta of fasting normal (n= 10) and EH (n=20) subjects. These results were compared with concurrent MR-based measurements of left ventricular mass index (LVMI) and abdominal subcutaneous and visceral fat and with 31P-MR spectroscopic measurement of in situ intracellular free magnesium levels (Mgi) in brain and skeletal muscle. Aortic distensibility in EH was consistently and significantly reduced at all measured sites (2.
View Article and Find Full Text PDF