Publications by authors named "A J Crevels"

Tissue engineering may become an alternative to current bladder augmentation techniques. Large scaffolds are needed for clinically significant augmentation, but can result in fibrosis and graft shrinkage. The purpose of this study was to investigate whether smart acellular collagen-heparin scaffolds with growth factors (GFs) VEGF, FGF2, and HB-EGF enhance bladder tissue regeneration and bladder capacity in a large animal model of diseased bladder.

View Article and Find Full Text PDF

Objective: To compare the regenerative capacity of diseased bladder in a large animal model of bladder exstrophy with regeneration in healthy bladder using a highly porous collagen scaffold.

Materials And Methods: Highly porous bovine type I collagen scaffolds with a diameter of 32 mm were prepared. In 12 fetal sheep a bladder exstrophy was surgically created at 79 days' gestation.

View Article and Find Full Text PDF

Background/purpose: In fetuses with gastroschisis, toxic products in the amniotic fluid and constriction at the defect of the abdominal wall are considered causative of damage to the eviscerated bowel. The aim of this study was to cover the eviscerated bowel in gastroschisis with a collagen scaffold to protect the bowel and induce cell growth into the scaffold, which could lead to skin or abdominal wall formation replacing the scaffold.

Methods: In 12 fetal lambs gastroschisis was surgically created at 79 days gestation.

View Article and Find Full Text PDF

We evaluated the regeneration of the abdominal wall using a dual-layer collagen biomatrix, and the protective effect on the bowel of fetal abdominal wall repair in a fetal sheep model for gastroschisis. In 14 fetal lambs, the abdominal wall was opened at 79 days' gestation, creating a gastroschisis. In group 1, the gastroschisis was left uncovered.

View Article and Find Full Text PDF

Objectives: To evaluate histological changes in an animal model for bladder exstrophy and fetal repair of the bladder defect with a molecular-defined dual-layer collagen biomatrix to induce fetal bladder wall regeneration.

Methods: In 12 fetal lambs the abdominal wall and bladder were opened by a midline incision at 79 days' gestation. In 6 of these lambs an uncorrected bladder exstrophy was created by suturing the edges of the opened bladder to the abdominal wall (group 1).

View Article and Find Full Text PDF