Oligodendrocyte progenitor cells differentiate into oligodendrocytes, which myelinate axons during development and following demyelinating injury. However, the mechanisms that drive the timing and specificity of developmental myelination are not well understood. We hypothesized that oligodendrocyte progenitor cell proliferation and differentiation would be affected by pathological neuronal activity during adolescent development when developmental myelination is occurring and that this would also impact neuron-to-oligodendrocyte progenitor cell connectivity and myelination.
View Article and Find Full Text PDFA fundamental challenge for cystic fibrosis (CF) gene therapy is ensuring sufficient transduction of airway epithelia to achieve therapeutic correction. Hypertonic saline (HTS) is frequently administered to people with CF to enhance mucus clearance. HTS transiently disrupts epithelial cell tight junctions, but its ability to improve gene transfer has not been investigated.
View Article and Find Full Text PDFA fundamental challenge for cystic fibrosis (CF) gene therapy is ensuring sufficient transduction of airway epithelia to achieve therapeutic correction. Hypertonic saline (HTS) is frequently administered to people with CF to enhance mucus clearance. HTS transiently disrupts epithelial cell tight junctions, but its ability to improve gene transfer has not been investigated.
View Article and Find Full Text PDFA molecular robot, which is a system comprised of one or more molecular machines and computers, can execute sophisticated tasks in many fields that span from nanomedicine to green nanotechnology. The core parts of molecular robots are fairly consistent from system to system and always include (i) a body to encapsulate molecular machines, (ii) sensors to capture signals, (iii) computers to make decisions, and (iv) actuators to perform tasks. This review aims to provide an overview of approaches and considerations to develop molecular robots.
View Article and Find Full Text PDF