Front Artif Intell
June 2022
Reaching the performance of fully supervised learning with unlabeled data and only labeling one sample per class might be ideal for deep learning applications. We demonstrate for the first time the potential for building one-shot semi-supervised (BOSS) learning on CIFAR-10 and SVHN up to attain test accuracies that are comparable to fully supervised learning. Our method combines class prototype refining, class balancing, and self-training.
View Article and Find Full Text PDFSearches for the lepton number violating K^{+}→π^{-}μ^{+}e^{+} decay and the lepton flavor violating K^{+}→π^{+}μ^{-}e^{+} and π^{0}→μ^{-}e^{+} decays are reported using data collected by the NA62 experiment at CERN in 2017-2018. No evidence for these decays is found and upper limits of the branching ratios are obtained at 90% confidence level: B(K^{+}→π^{-}μ^{+}e^{+})<4.2×10^{-11}, B(K^{+}→π^{+}μ^{-}e^{+})<6.
View Article and Find Full Text PDFChondroitin sulfate is a major component of the extracellular matrix in both the central and peripheral nervous systems. Chondroitin sulfate is upregulated at injury, thus methods to promote neurite extension through chondroitin sulfate-rich matrices and synthetic scaffolds are needed. We describe the use of both chondroitin sulfate and a novel chondroitin sulfate-binding peptide to control the release of nerve growth factor.
View Article and Find Full Text PDFPrevious work has revealed robust dorsal root ganglia neurite growth in hydrogels of chondroitin sulfate. In the current work, it was determined whether addition of a synthetic bioactive peptide could augment neurite growth in these matrices via enhanced binding and sequestering of growth factors. Fluorescence recovery after photobleaching studies revealed that addition of peptide slowed nerve growth factor diffusivity in chondroitin sulfate gels, but not in control gels of hyaluronic acid.
View Article and Find Full Text PDFBrachial plexus injury is a serious medical problem that affects many patients annually, with most cases involving damage to the nerve roots. Therefore, a chondroitin sulfate hydrogel was designed to both serve as a scaffold for regenerating root neurons and deliver neurotrophic signals. Capillary electrophoresis showed that chondroitin sulfate has a dissociation constant in the micromolar range with several common neurotrophins, and this was determined to be approximately tenfold stronger than with heparin.
View Article and Find Full Text PDF