How cells establish the interphase genome organization after mitosis is incompletely understood. Using quantitative and super-resolution microscopy, we show that the transition from a Condensin to a Cohesin-based genome organization occurs dynamically over 2 h. While a significant fraction of Condensins remains chromatin-bound until early G1, Cohesin-STAG1 and its boundary factor CTCF are rapidly imported into daughter nuclei in telophase, immediately bind chromosomes as individual complexes, and are sufficient to build the first interphase TAD structures.
View Article and Find Full Text PDFAim: During the COVID-19 pandemic, social restrictions significantly impacted post-graduate training in pediatric surgery. This paper describes the implementation and continuation of a German-language, online training program for pediatric surgery residents, named "KiWI" (Kinderchirurgische Weiterbildung im Internet), which was established during the period of social distancing.
Method: "KiWI" was designed as a monthly, post-graduate online seminar course that combined practical relevance with theoretical knowledge.
The post-mortem interval estimation for human skeletal remains is critical in forensic medicine. This study used Raman spectroscopy, specifically comparing a handheld device to a Raman microscope for PMI estimations. Analyzing 99 autopsy bone samples and 5 archeological samples, the research categorized them into five PMI classes using conventional methods.
View Article and Find Full Text PDFHow genomic DNA is folded during cell division to form the characteristic rod-shaped mitotic chromosomes essential for faithful genome inheritance is a long-standing open question in biology. Here, we use nanoscale DNA-tracing in single dividing cells to directly visualize how the 3D fold of genomic DNA changes during mitosis, at scales from single loops to entire chromosomes. Our structural analysis reveals a characteristic genome scaling minimum at 6-8 Mbp in mitosis.
View Article and Find Full Text PDF