Publications by authors named "A J Braun"

Proton conducting electrochemical cells (PCECs) are efficient and clean intermediate-temperature energy conversion devices. The proton concentration across the PCECs is often nonuniform, and characterizing the distribution of proton concentration can help to locate the position of rate-limiting reactions. However, the determination of the local proton concentration under operating conditions remains challenging.

View Article and Find Full Text PDF

Background: The goal of cystic fibrosis transmembrane conductance regulator (CFTR) modulators is to reach normal CFTR function in people with cystic fibrosis. Vanzacaftor-tezacaftor-deutivacaftor restored CFTR function in vitro and in phase 2 trials in participants aged 18 years and older resulting in improvements in CFTR function, as measured by sweat chloride concentrations and lung function as measured by spirometry. We aimed to evaluate the efficacy and safety of vanzacaftor-tezacaftor-deutivacaftor compared with standard of care elexacaftor-tezacaftor-ivacaftor in individuals with cystic fibrosis aged 12 years and older.

View Article and Find Full Text PDF

Recent advancements in Parkinson's disease (PD) drug development have been significantly driven by genetic research. Importantly, drugs supported by genetic evidence are more likely to be approved. While genome-wide association studies (GWAS) are a powerful tool to nominate genomic regions associated with certain traits or diseases, pinpointing the causal biologically relevant gene is often challenging.

View Article and Find Full Text PDF

Food is medicine (FIM) interventions are a strategy for preventing and managing chronic disease via diet. These interventions often combine the provision of food with access to behavior change support (e.g.

View Article and Find Full Text PDF

The objective of this study is to develop a universally applicable approach for establishing the optimal dose range for the irradiation of plant and animal products. The approach involves the use of the optimization function for establishing the optimal irradiation dose range for each category of plant and animal product to maximize the suppression of targeted pathogens while preserving the surrounding molecules and biological structures. The proposed function implies that pathogens found in the product can be efficiently suppressed provided that irradiation is performed with the following criteria in mind: a high irradiation dose uniformity, a high probability of irradiation hitting pathogens and controlled heterogeneity of radiobiological sensitivity of pathogens.

View Article and Find Full Text PDF