Publications by authors named "A J Baxi"

Dysregulation of the hematopoietic niche during hyperlipidemia facilitates pathologic leukocyte production, driving atherogenesis. Although definitive hematopoiesis occurs primarily in the bone marrow, during atherosclerosis this also occurs in the spleen. Cells of the bone marrow niche, particularly endothelial cells, have been studied in atherosclerosis, although little is known about how splenic endothelial cells respond to the atherogenic environment.

View Article and Find Full Text PDF

Molecular understanding of the vertebrate Organizer, a tissue center critical for inductive signaling during gastrulation, has so far been mostly limited to transcripts and a few proteins, the latter due to limitations in detection and sensitivity. The Spemann-Mangold Organizer (SMO) in the South African Clawed Frog (), a popular model of development, has long been known to be the origin of signals that pattern the mesoderm and central nervous system. Molecular screens of the SMO have identified several genes responsible for the ability of the SMO to establish the body axis.

View Article and Find Full Text PDF

Over 200 genes are known to underlie human congenital hearing loss (CHL). Although transcriptomic approaches have identified candidate regulators of otic development, little is known about the abundance of their protein products. We used a multiplexed quantitative mass spectrometry-based proteomic approach to determine protein abundances over key stages of otic morphogenesis to reveal a dynamic expression of cytoskeletal, integrin signaling, and extracellular matrix proteins.

View Article and Find Full Text PDF

The CUL4 paralogs CUL4A and CUL4B assemble into structurally similar multisubunit ubiquitin E3 ligases (CRL4A/B) that regulate diverse aspects of cell biology. New work in this issue of The EMBO Journal shows that the longer N-terminal tail of CUL4B tells these molecular twins apart, by promoting the formation of paralog-specific CRL4B complexes that control cytoskeletal processes during mitosis and brain development.

View Article and Find Full Text PDF

Molecular understanding of the vertebrate Organizer, a tissue center critical for inductive signaling during gastrulation, has so far been limited to transcripts and some proteins due to limitations in detection and sensitivity. The Spemann-Mangold Organizer (SMO) in the South African Clawed Frog ( ), a popular model of development, has long been discovered to induce the patterning of the central nervous system. Molecular screens on the tissue have identified several genes, such as goosecoid, chordin, and noggin, with independent ability to establish a body axis.

View Article and Find Full Text PDF