Material stocks of infrastructure, buildings, and machinery are the biophysical basis of production and consumption. They are a crucial lever for resource efficiency and a sustainable circular economy. While material stock research has proliferated over the last years, most studies investigated specific materials or end-uses, usually not embedded into an economy-wide perspective.
View Article and Find Full Text PDFThe rollout of electric vehicles and photovoltaic panels is essential to mitigate climate change. However, they depend on technology-critical elements (TCEs), which can be harmful to human health and whose use is rapidly expanding, while recycling is lacking. While mining has received substantial attention, in-use dissipation in urban areas has so far not been assessed, for example, corrosion and abrasion of vehicle components and weather-related effects affecting thin-film photovoltaic panels.
View Article and Find Full Text PDFSpinal bone lesions encompass a wide array of pathologies, spanning from benign abnormalities to aggressive malignancies, such as diffusely localized metastases. Early detection and accurate differentiation of the underlying diseases is crucial for every patient's clinical treatment and outcome, with radiological imaging being a core element in the diagnostic pathway. Across numerous pathologies and imaging techniques, deep learning (DL) models are progressively considered a valuable resource in the clinical setting.
View Article and Find Full Text PDFChemokines guide immune cells during their response against pathogens and tumors. Various techniques exist to determine chemokine production, but none to identify cells that directly sense chemokines in vivo. We have generated CCL3-EASER (ErAse, SEnd, Receive) mice that simultaneously report for Ccl3 transcription and translation, allow identifying Ccl3-sensing cells, and permit inducible deletion of Ccl3-producing cells.
View Article and Find Full Text PDF