Following on from ezutromid, the first-in-class benzoxazole utrophin modulator that progressed to Phase 2 clinical trials for the treatment of Duchenne muscular dystrophy, a new chemotype was designed to optimise its physicochemical and ADME profile. Herein we report the synthesis of SMT022357, a second generation utrophin modulator preclinical candidate, and an asymmetric synthesis of its constituent enantiomers. The pharmacological properties of both enantiomers were evaluated and .
View Article and Find Full Text PDFGenetic approaches for the diagnosis and treatment of inherited muscle diseases have advanced rapidly in recent years. Many of the advances have occurred in the treatment of Duchenne muscular dystrophy (DMD), a muscle wasting disease where affected boys are typically wheelchair bound by age 12 years and generally die in their twenties from respiratory failure or cardiomyopathy. Dystrophin is a 421 kD protein which links F-actin to the extracellular matrix via the dystrophin-associated protein complex (DAPC) at the muscle membrane.
View Article and Find Full Text PDFUtrophin modulation is a promising therapeutic strategy for Duchenne muscular dystrophy (DMD), which should be applicable to all patient populations. Following on from ezutromid, the first-generation utrophin modulator, we describe the development of a second generation of utrophin modulators, based on the bioisosteric replacement of the sulfone group with a phosphinate ester and substitution of the metabolically labile naphthalene with a haloaryl substituent. The improved physicochemical and absorption, distribution, metabolism, and excretion (ADME) properties, further reflected in the enhanced pharmacokinetic profile of the most advanced compounds, and , led to significantly better exposure compared to ezutromid and alleviation of the dystrophic phenotype in mice.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is a lethal neuromuscular disorder caused by loss of dystrophin. Several therapeutic modalities are currently in clinical trials but none will achieve maximum functional rescue and full disease correction. Therefore, we explored the potential of combining the benefits of dystrophin with increases of utrophin, an autosomal paralogue of dystrophin.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
December 2018
Duchenne muscular dystrophy (DMD) is an X-linked muscle-wasting disease caused by mutations in the dystrophin gene. DMD boys are wheelchair-bound around 12 years and generally survive into their twenties. There is currently no effective treatment except palliative care, although personalized treatments such as exon skipping, stop codon read-through, and viral-based gene therapies are making progress.
View Article and Find Full Text PDF